
Machine-Learning Based Congestion
Estimation for Modern FPGAs

D. Maarouf, A. Alhyari, Z. Abuowaimer, T. Martin, A. Gunter, G. Grewal, S. Areibi, A. Vannelli
School of Engineering/School of Computer Science, University of Guelph

Guelph, Ontario, Canada
{dmaarouf,aalhyari,abuowaiz,tmarti14,agunter,ggrewal,sareibi}@uoguelph.ca, Tony.vannelli@usask.ca

Abstract—Avoiding congestion for routing resources has
become one of the most important placement objectives. In
this paper, we present a machine-learning model for accu-
rately and efficiently estimating congestion during FPGA
placement. Compared with the state-of-the-art machine-
learning congestion-estimation model, our results show
a 25% improvement in prediction accuracy. This makes
our model competitive with congestion estimates produced
using a global router. However, our model runs, on average,
291x faster than the global router.

Keywords-FPGA; Congestion; Machine Learning

I. INTRODUCTION

Placement tools that seek only to optimize wirelength
and/or timing without also taking into account the (fixed)
routing resources present on the FPGA device may
produce placements that exhibit unacceptably low per-
formance, or placements which are unroutable [2]. An
effective way to improve the routability of any design tar-
geting an FPGA is to incorporate congestion awareness
into the placement flow. By first identifying local regions
of congestion, cell inflation can be performed to ensure
that the routing resources in these regions are no longer
exceeded. However, the ultimate success of the previous
approach greatly depends on the congestion estimation
technique being both fast and accurate. The former is
necessary as estimating congestion may have to be per-
formed numerous times while optimizing a placement,
especially if the circuit being placed is highly congested.
The latter is necessary because a large gap between
estimated congestion and the actual performance of the
global and detailed routers may result in degraded per-
formance or an unroutable placement. Many techniques
of various kinds have been proposed for estimating
FPGA congestion. The most computationally efficient
techniques are based on using fast-to-compute heuristics
[16]. However, the resulting congestion estimates are
often far away from the actual congestion encountered by
the detailed router. Consequently, others have sought to
obtain accurate congestion estimates by running a global
router [11] during placement. This approach results in
more accurate congestion estimates, but at the cost of

runtime. In fact, the cost of running the global router is
so prohibitive, often the router can only be run a few
times during placement, potentially limiting its overall
effectiveness.

Recently, research has been directed toward using
linear-regression to model and predict routing congestion
[10]. When tested using the 12 ISPD 2016 Routing-
Driven FPGA Placement contest benchmarks [15], the
regression model achieves an accuracy of 90% compared
with the congestion estimates produced by the Vivado
Design Suite. However, the experimental results that we
present in this paper show that when used to predict
the actual congestion encountered by the Vivado detailed
router, the accuracy of the previous model [10] drops to
60%. This result serves to highlight the fact that when
seeking to solve a complex problem, like estimating
congestion, features must be carefully prepared to char-
acterize the underlying problem. When done correctly,
such features often allow for the use of a simple model
that can be computed quickly, which works well when
presented with new input data, and that is not overly
sensitive to tuning parameters.

Motivated by the work in [10], we present an efficient
machine-learning model for accurately predicting actual
congestion. Our model includes one feature from [10],
but introduces three new features to capture the subtleties
of the underlying congestion problem. When tested with
the 12 ISPD 2016 contest benchmarks, along with 360
benchmarks provided by Xilinx Inc., our model achieves
a 25% increase in accuracy compared with [10] when
predicting actual congestion. It also runs (on average)
291x faster than the global router employed in [1], with
no loss in accuracy.

The remainder of this paper is organized as follows.
In Section II a detailed description of the heterogeneous
UltraScale FPGA architecture used in this work is pre-
sented along with related work published. The main
methodology and framework proposed in this paper are
introduced in Section III. The experimental setup and
detailed results and analysis are presented in Section IV.
Section V presents our conclusions and future work.

I/O Slice BRAM DSP Switch Box G−Cell Switch Box Pin G−Cell Switch Box Pin BBSite

(a) (b) (c)

Fig. 1: Xilinx UltraScale Architecture

II. BACKGROUND AND PREVIOUS WORK

Our work in this paper is based on the UltraScale
FPGA architecture introduced recently by Xilinx [14].
The UltraScale FPGA, as shown in Fig. 1(a), consists
of heterogeneous programmable logic blocks such as
Slices, Random Access Memory Blocks (i.e., BRAMs),
Digital-Signal Processing blocks (i.e., DSPs) and I/O.
A Slice consists of a single Configurable Logic Block
(CLB) which can contain up to eight Basic Logic Ele-
ments (BLE). Each BLE can contain up to two Look Up
Tables (LUTs) and two Flip Flops (FFs). As well, there
are prefabricated routing segments of different lengths
in both horizontal and vertical directions. LUTs and FFs
when grouped together within a Slice share a single
switch for routing. Fig. 1(b) shows in more detail the
routing architecture of the FPGA and demonstrates how
the Switch Boxes can provide both intra- and inter-
slice connectivity. A routing region is uniformly formed
by vertical and horizontal evenly spaced grid lines that
create a uniform grid over the FPGA fabric. The latter is
composed of unit global cells (i.e., gcells). Each gcell has
a number of vertical and horizontal routing resources that
can be used in congestion estimation. Fig. 1(c) shows
the Bounding Box (BB) or Half Perimeter WireLength
(HPWL) used to estimate the length of a net. In gen-
eral, as the number of overlapping nets inside a region
increases, the Switch Box utilization also increases, thus
affecting congestion in the region.

A. Related Work

The fixed resources on an FPGA fabric provides a
unique challenge to routing, and so many congestion
estimation techniques have been developed specifically
for FPGAs. The authors in [17] proposed a congestion
driven placement approach which counts the number
of overlapping bounding boxes of all nets in a region,
and assigns that as the congestion value of that region
(known as BB cost). However, this technique tends to

neglect the effect of larger bounding boxes overlapping
smaller bounding boxes, thus reducing the accuracy
of the congestion estimate. [16] introduced the Wire
Length Per Area (WLPA) which improves upon the BB
cost. Unlike BB cost [17], which simply counts the
number of overlapping bounding boxes within a region,
WLPA takes into account the sizes of each bounding
box covering a region. Specifically, WLPA estimates
the amount of wire that a net will use, then distributes
that amount over the gcell(s) within its bounding-box.
Another important measure proposed by [16] is the Net
Cuts per Region (NCPR) which is both fast and used
as a direct indicator for congestion prediction. However,
this technique tends to produce discontinuous congestion
regions that are not reflected in real congestion maps.

A well known congestion estimate developed specif-
ically for FPGAs is fGREP. Presented in [6], fGREP
employs a routing resource graph to provide a detailed
prediction of congestion. The method is extended to
fGREP2 in [7], with the goal of improving runtime.
While fGREP and fGREP2 generally provide a relatively
accurate, detailed estimate of congestion at the cost of a
slightly worse runtime compared to some less precise
estimates, the full variety and limitations of routing
resources available to the FPGA are still not considered.

In [3], routability is predicted by examining all avail-
able routing resources. This paper uses a probabilistic
analysis approach to estimate the number of resources
required to be used by a design. This can provide a
prediction of a circuit’s routability before placement.
However, probabilistic congestion estimation methods
tend to be very slow and thus useless for large designs.

A series of estimation techniques that take the FPGA
limitations of fixed channel widths and wire lengths
into account are presented by Lemieux [16]. In these
methods, congestion estimations are taken from several
existing techniques and processed as images. An image
blending method is presented, which iteratively spreads

the congested regions in the image to nearby areas.
A peak saturation method is also proposed to model
the fixed channel widths by expanding the most con-
gested regions. Congestion estimation techniques such
as WLPA improved using one or both of these methods.
While these estimates provide useful improvements, they
still do not directly consider the FPGA features they seek
to model, and are tuned experimentally for each base
congestion estimation technique.

Most recently, a machine learning approach based on a
linear regression model was used to estimate congestion
in [10]. Their model uses three features from each site
based on WLPA and pin count, along with the features
from surrounding sites. Once trained, the model is able
to estimate the congestion prediction given by Vivado;
however, it is less accurate as a predictor of the actual
congestion found by the detailed router. There are several
issues with the work in [10] that we seek to address in
this paper including: (i) feature engineering, as will be
explained in Section IV, (ii) the number of benchmarks
used to train the machine learning model, and (iii) the
accuracy of congestion estimation reported.

III. PROPOSED FRAMEWORK

Our methodology for constructing a machine-learning
model to quickly and accurately predict congestion dur-
ing placement is illustrated in Fig. 2. The proposed
framework consists of an off-line training and testing
stage, and an on-line deployment stage. The steps to be
taken in each stage are described below.

A. Step 1: Benchmarks to be used

To train and test the prediction model, we start with
a large set of benchmarks that includes the 12 ISPD
2016 contest benchmarks [13], and an additional 360
benchmarks provided directly by Xilinx Inc. The latter
benchmarks were created using the netlist generation
tool, Gnl [5], and target a modern Xilinx UltraScale
FPGA device. During synthesis, key circuit features were
varied to create a rich set of benchmarks, as shown in
Table I. The benchmarks range in size from 0.1 to 1.1
million gates, and produce highly congested placements,
as the results in Table X will later show.

TABLE I: Range of Key Circuit Properties [5]

#LUTs #FF #BRAM #DSP #CSet #IO R.E
44K-518K 52K-630K 0-1035 0-620 11-2684 150-600 0.4-0.8

B. Step 2: Creating Training Data

To have a predictive model perform well on new
data, it is desirable to have a large, representative set
of data (i.e., records) with which to train and test the

model. With this in mind, we initially create 28,478,400
records as follows: First, two state-of-the-art academic
placers, [8] and Ripple [9], are used to create actual
placement solutions for each of the 372 benchmarks (see
Step 1). Second, in keeping with the UltraScale FPGA
device having 480 rows and 85 columns, each placement
solution is partitioned into a grid containing 480 x 85
equal-size regions, where each region corresponds to
a gcell. From this point forward, each gcell represents
a single record that can be used either for training or
testing purposes.

C. Step 3: Feature Extraction

As illustrated in Fig. 2, each record contains four
features and a single label. The label is a continuous
output variable in the range [0,1] that corresponds to the
actual congestion in the corresponding gcell. The fea-
tures are continuous input variables which are designed
to estimate how the placement solution will impact the
routing stage. The features are generic and easy to
compute, and when combined together can accurately
predict the actual congestion value of a gcell. Each
feature is described in detail below:

1) WireLength Per Area (WLPA): Estimates the
routing demand of each net by estimating the
wirelength of the net and then distributing the
resulting demand over the gcells covered by the
bounding box of the nets’ pins. The router tends to
route nets within the nets bounding box, therefore
WLPA helps to identify gcells where many nets
will contend for routing resources. The WLPA of
a placement is calculated as:

f1 =
∑

n∈Ni

wn.HPWLn

#gcelln
(1)

where HPWLn is the half perimeter wirelength
of net n, wn is a correction factor used in VPR
to improve the accuracy of HPWL on high fan-
out nets, Ni is the set of nets whose bounding
box overlap a gcell, and #gcelln is the number of
gcells covered by net n.

2) Pin Count: The number of pins within a gcell
is used to model the local congestion of a gcell.
Other features such as WLPA are designed to
estimate the routing demand on gcells due to inter-
switch routing, but do not consider intra-switch
routing demand. The internal routing flexibility of
a switch is limited, therefore, higher demand on
local routing resources results not only in internal
congestion for the gcell, but also further degrades
the switches flexibility and increases the likelihood
that the routing trees of local connections will

Fig. 2: Machine Learning Framework: Training and Deployment

overflow into surrounding gcells contributing to
global congestion. This feature is calculated as:

f2 =
∑

n∈Ni

#pinsn,gcelli (2)

where Ni is the set of nets with at least one pin in
the gcell, and #pinsn,gcelli is the number of pins
of net n residing in gcelli.

3) Nets Cut Per Region: The absolute number of
nets cut in a physical region spanning multiple
gcells is also used to model routing demand. A
large number of cut nets indicates that many nets
must enter or leave the region during routing,
which indicates that there is high demand on the
inter-region global routing resources. Using larger
window sizes allows a more global view of the
demand on routing resources to be captured. Two
window sizes are considered: 5× 5 and 9× 9.

f3 =|W5x5 | (3)

f4 =|W9x9 | (4)

Wjxj is the set of connected nets within a window
of size j × j, where each net has at least one pin
inside the physical region specified by the window
and at least one pin outside of the region.

It is important to note that all of the previous features
require little effort to compute. This is important, since
congestion prediction may need to be performed fre-
quently during placement once the model is deployed.

D. Step 4: Label Extraction

To complete each record, the label or actual conges-
tion estimate for each gcell is computed. The actual

congestion is determined by first using the Vivado Router
to route each of the placements produced in step 2 for
the original 372 benchmarks. Then, a Global Routing
Resource (GRR) graph is constructed. The first step in
constructing the GRR graph for the UltraScale FPGA
architecture is to use Tincr [12] to generate an XDLRC
file. The XDLRC file is then parsed, and a compact
representation of the GRR graph is built. Using the GRR
graph, the interconnect demands on each channel for
each switch box (within each gcell) are determined. The
actual congestion value of a switch box is calculated as
the sum of the interconnect demands of each outgoing
channel divided by the sum of the capacities of each
channel. The congestion value of the switch box is used
as the label for the record.

E. Step 5: Filtering

After step 4, it is possible that some of the records
will correspond to unused regions on the FPGA device.
(This will be the case if the pin count or the congestion
in a gcell is zero.) In the current dataset, 7,125,418 such
records were found. These were filtered and removed,
leaving a total of 21,352,982 valid records for training
and testing.

F. Step 6: Training and Testing

To avoid bias when creating and evaluating a model,
the same records should not be used to both create and
test a model. Rather, the records should be partitioned
into two independent sets: a larger set, which are used
to train the model, and another smaller set, which are
used to test (or assess) the performance of the model.
We randomly select 70% of the records from step 5 to

appear in the training set, while the remaining 30% are
used for testing and analysis purposes.

G. Step 7: Machine-Learning Models

The performance of different machine-learning mod-
els for performing prediction strongly depends on the
structure and size of the data used to build the models.
Therefore, the correct choice of model often remains
unclear unless several models are tested and compared.
In this paper, we implement and compare several pre-
diction models, and highlight their advantages and dis-
advantages:

1) Linear Regression is a technique used to model the
relationship between several independent variables
and a single dependent variable. This technique is
fast and useful when the relationship to be modeled
is not complex.

2) K-Nearest Neighbor (KNN) is a non-parametric
technique that utilizes the responses of the k-
nearest neighbors in the training data to form a
prediction.

3) Artificial Neural Networks (ANNs) are effective
at modeling non-linear relationships, and are very
flexible in learning almost any kind of feature
variable relationships. However, they can be quite
challenging and computationally intensive to train,
since they require careful hyper-parameter tuning.

4) Random Decision Forests are also effective at
learning highly complex, non-linear relationships,
and are easy to understand and interpret. However,
they can be prone to major over-fitting.

H. Step 8: Testing and Evaluation Metrics

The performance of each of the models created in step
7 is now determined using the testing data from Step 6.
As there is no one best metric for determining predictive
accuracy, we employ the following three popular mea-
sures where i and j are used as indices to specify the row
and column location of a gcell in the N×M FPGA array,
yi,j represents the actual congestion value extracted from
the router for a gcell located in row i column j, ŷi,j is
the estimated congestion value for a gcell located in row
i and column j, and ymax is a normalizing factor equal
to the maximum real congestion value:

1) Mean Absolute Error (MAE):

MAE =
1
N

N∑
i=1

M∑
j=1

| yi,j − ŷi,j | (5)

This measure is the average size of the absolute
relative error.

2) The Root Mean Square Error (RMSE):

RMSE =

√√√√ 1
N ×M

N∑
i=1

M∑
j=1

(
yi,j − ŷi,j

)2

(6)

This measure gives greater weight (or emphasis)
to larger errors.

3) The R-squared metric (R2):

R2 = 1−
∑N

i=1

∑M
j=1(yi,j − ŷi,j)2∑N

i=1

∑M
j=1(yi,j − ȳ)2

(7)

This gives a measure of how well the model
replicates the observed outcomes.

We also employ the following two common metrics for
directly comparing congestion estimates:

1) The Average Absolute Normalized Error
(A.N.N.E):

a.a.n.e =
1

N ×M

N∑
i=1

M∑
j=1

| yi,j − ŷi,j |
ymax

(8)

Unlike RMSE, this measure is not biased towards
larger errors.

2) The Sum of Absolute Error (SAD):

sad =
N∑

i=1

M∑
j=1

| yi,j − ŷi,j | (9)

This measure can be used to measure the disparity
between an estimated congestion and a golden
reference (e.g. produced by a router).

I. Step 9: Deployment

As a final step, the prediction model is integrated
into a state-of-the-art placement flow [8], and the overall
performance of the placer is analyzed.

IV. RESULTS AND DISCUSSION

Experiments were carried out using a Linux machine
running on a Xeon 3.2GHz processor. The Scikit-Learn
[4] Python module was used to implement the various
regression models. All routing was performed by Vivado
(version 15) with a patch applied to make it compatible
with the modified bookshelf benchmark format used in
the ISPD 2016 FPGA placement contest.

A. Results Reported in [10]

In [10], the authors introduce a regression model based
on the following three features extracted from each gcell:

1) x1 is the WLPA given in Eqn. 1 of this paper.
2) x2 =

∑
m∈Ni

#pins of net m.
3) x3 =

∑
m∈Ni

#pinsm,gcelli

#pins of net m ×
wm.HPWLm

#gcellm
.

Table II shows the impact of the three selected features
in [10]. It is clear from Table II that feature x3 has little
or no affect on training the linear regression model, and
that feature x2 has only a small contribution on its own.
When both x1 and x2 are combined, the R2 measure
increases slightly from 57.5% to 60.2%. To encourage

TABLE II: Comparison of Features from [10]

Regression Features Accuracy Measures
Models x1 x2 x3 MAE RMSE R2

HKM1 * 0.0839 0.1044 57.57%
HKM2 * 0.1124 0.1412 22.35%
HKM3 * 0.1280 0.1601 0.13%
HKM4 * * 0.0805 0.1011 60.25%
HKM5 * * 0.0839 0.1043 57.66%
HKM6 * * 0.1116 0.1397 24.02%
HKM7 * * * 0.0801 0.1005 60.39%

the model to capture global congestion information, the
authors in [10] replicate the three features from eight
neighboring sites and add them to each gcell. A total of
27 features per gcell are subsequently used to train and
test the model.

Our first step was to reproduce the results obtained
by [10], as shown in Table III. We used the same three
features to recreate the Local Linear (LL) model, and the
27 features to recreate the Global Linear (GL) model.
The 372 benchmarks described in Section III-A were
placed, features were extracted, and both LL and GL
models were trained and tested. The results in Table III

TABLE III: LL and GL Results for [10]

Model Vivado Estimated Vivado Detailed Router
R2 MAE R2 MAE

LL 95.1% 4.49% 60.4% 8.01%
GL 95.5% 4.22% 61.7% 7.90%

clearly shows that both models achieve an accuracy
slightly greater than 95%, but only when compared
with the congestion estimates produced by the Vivado
Design Suite. When compared to the actual (i.e., true)
congestion obtained following routing, the accuracy of
the models drops closer to 60%. These results show that
the features used in [10] do not adequately characterize
the underlying congestion encountered by the router. In
fact, they seem to suggest that the Vivado estimate itself
may be based primarily on WLPA.

B. Proposed Machine Learning Framework: Results

Next, we use the framework described in Sec. III to
create a linear-regression model using our own features,
with the aim of achieving a higher accuracy compared
to [10] when predicting actual congestion. To assess the

individual and combined impact of the four features
introduced earlier in Sec. III-C, we perform a full-
factorial experiment by training and testing fifteen linear-
regression models (i.e., GM1 - GM15). The results are
shown in Table IV.

TABLE IV: Comparison of Features for Our Model

Regression Features Accuracy Measures
Models f1 f2 f3 f4 MAE RMSE R2

GM1 * 0.0839 0.1044 57.57%
GM2 * 0.1218 0.1496 12.87%
GM3 * 0.0709 0.0889 69.22%
GM4 * 0.0681 0.0852 71.78%
GM5 * * 0.0808 0.1001 60.94%
GM6 * * 0.0547 0.0692 81.36%
GM7 * * 0.0590 0.0740 78.69%
GM8 * * 0.0683 0.0863 71.03%
GM9 * * 0.0614 0.0776 76.57%
GM10 * * 0.0649 0.0814 74.19%
GM11 * * * 0.0530 0.0673 82.35%
GM12 * * * 0.0541 0.0684 81.81%
GM13 * * * 0.0537 0.0679 82.03%
GM14 * * * 0.0600 0.0760 77.49%
GM15 * * * * 0.0510 0.0649 83.61%

Our results show that all four features (i.e., f1 - f4)
have predictive power ranging from 12.87% to 71.78%.
The highest accuracy achieved is 83.61%, and occurs
when all four features are employed (i.e., GM15). In
[16], Lemieux shows that the accuracy of a congestion-
estimation method can be increased by performing
smoothing. We explore this in our own model, by
calculating the average value of feature f3 in the 5x5
window centered on each gcell, and using this value as
an additional (smoothing) feature. Results in Table V
show that including this smoothed feature improves the
accuracy to 85.2%. This can be understood in light of
the fact that the congestion values of adjacent gcells
tend to change continuously and gradually in the real
congestion map produced by the Vivado detailed router,
while large, noncontinuous jumps are common in the
congestion maps produced using Nets Cut Per Region
(NCPR).

TABLE V: Our Features with Smoothing

Regression Features Accuracy Measures
Models f1 f2 f3 f4 Smoothing MAE RMSE R2

GM15 * * * * 0.0510% 0.0649% 83.61%
GM16 * * * * * 0.0479% 0.0616% 85.24%

C. Regression Models: A Comparison

Several regression models are now compared in terms
of accuracy and performance, as seen in Table VI (based
on 70% training, 30% testing). Hyper-parameter tuning
of all models was performed on all regression models.
The accuracy results reported in the Table VI are uni-
formly high and comparable.

(a) A.A.N.E = 15.59% (b) A.A.N.E = 18.59% (c) A.A.N.E = 12.50% (d) A.A.N.E = 9.81% (e) A.A.N.E = 5.80% (f) A.A.N.E = 5.33% (g) A.A.N.E = 0.00%

Fig. 3: (a) HKM7[10] (b) WLPA (c) NCPR (d) fGREP (e) mPFGR (f) GM16 (g) Vivado Detailed Router

TABLE VI: Regression Methods (70/30 Train/Test)

Regression Accuracy Measures CPU Time (s)
Techniques R2 MAE RMSE Training Testing
GM16 85.24% 0.0479 0.0616 4.17 0.077
KNN 85.41% 0.0471 0.0612 738.23 595.24
Random For. 85.99% 0.0462 0.0599 1513.37 87.52
MLP 85.97% 0.0464 0.0600 603.63 0.53

D. Overfitting

A common issue in machine learning is overfitting
which usually occurs when a model captures both the
signal of interest and noise present in a dataset. When
the model used for regression is complex, instead of
generalizing and approximating the true model for the
entire sample of data, it tends to memorize, thus fitting
random noise in the specific sample and data used. To
confirm that proposed model in this work does not over-
fit, we first use cross-validation that can detect overfit
models by determining how well our model generalizes
to other data sets by partitioning the data. Table VII

TABLE VII: Regression Models (10-Fold CV)

Regression Accuracy Measures CPU Time (s)
Techniques R2 MAE RMSE Training Testing
GM16 85.23% 0.0479 0.0615 5.34 0.026
KNN 85.41% 0.0471 0.0612 1108.61 139.245
Random For. 85.99% 0.0462 0.0599 1640.70 47.584
MLP 86.16% 0.0461 0.0597 583.73 0.194

shows similar results to that in Table VI, but based on
10-fold cross validation. This provides evidence that the
regression model used in this work is not overfitting.

The second step we take to establish that our model is
not overfitting is by using regularization techniques that
add a penalty for model complexity to reduce overfit-
ting. In this experiment, we use both Lasso Regression

and Ridge Regression. Table VIII clearly indicates that
results obtained by the simple regression model are
almost identical to those obtained by both Lasso and
Ridge which confirms that the former generalizes without
memorizing.

TABLE VIII: GM16 vs. Lasso vs. Ridge

Regression Accuracy Measures CPU Time (s)
Techniques R2 MAE RMSE Training Testing
GM16 85.23% 0.0479 0.0615 5.01 0.022
Lasso Reg. 85.18% 0.0481 0.0616 5.56 0.028
Ridge Reg. 85.23% 0.0479 0.0615 1.98 0.027

E. Congestion Estimation Techniques: A Comparison
Next, we compare several congestion estimation tech-

niques in the form of WLPA, NCPR, fGREP, a global
router (mPFGR) [8], the machine-learning model in
[10] (HKM7), along with our machine-learning model
(GM16) based on linear regression. Table IX compares
the previous methods based on SAD, AANE, RMSE,
and R2 for all 372 benchmarks, and shows that our
model, followed by the global router give the best con-
gestion estimates. Fig. 3 shows the individual heatmaps
produced by the different methods. Although only for a
single benchmark, these maps are typical of what was
obtained for the other benchmarks.

TABLE IX: Congestion Estimation Techniques

Cong. Estimation Congestion Metrics Accuracy Measures
Methods SAD a.a.n.e RMSE R2

GM16 2891.28 6.73% 5.93% 85.24%
mPFGR [1] 3126.27 7.34% 6.41% -
fGREP [7] 4351.59 9.66% 8.93% -
NCPR [16] 5254.11 11.47% 10.07% -
WLPA [16] 6185.44 14.20% 12.30% -
HKM7 [10] 7983.41 19.23% 15.29% 60.39%

F. Case Study

As a final step, we integrate our linear-regression
model (GM16) and the global router (mPFGR) into
our placement flow in [3], then perform placement and
routing on all 372 benchmarks. Resolving congestion
during placement involves first obtaining a congestion
estimate (i.e., using one of the previous models), then
using that estimate to perform cell/LUT inflation to
spread the congestion to less congested regions. The
results are shown in Table X. When congestion is not
addressed, the Vivado router is unable to route 225
benchmarks. However, only two benchmarks fail to route
when using either our congestion-estimation model or
the global router. There is no significant difference in
final routed wirelength. However, the runtime for the
Vivado router is 19% less when using our congestion-
estimation model compared to the global router. Fig. 4
shows that our model is consistently faster than the
global router. On average, the machine-learning model
proposed in this work is 291x faster than the global
router as a standalone congestion-estimation technique.

TABLE X: GM16 vs. mPFGR vs. No Estimation

Congestion Method #Failures Routed-WL Router Runtime Placer Runtime
(Norm.) (Norm.) (Norm.)

GM16 2 1.00x 1.00x 1.00x
mPFGR [1] 2 1.00x 1.19x 1.17x
No Estimation 225 1.03x 3.15x 0.47x

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250 300 350

R
un

tim
e

(s
)

Benchmark Id

GM16
Global Router

Fig. 4: GM16 and mPFGR Runtime (s)

V. CONCLUSIONS AND FUTURE WORK

In this paper, a machine-learning model for estimating
congestion during placement has been presented. Based
on linear regression, the model employs several relevant
features to capture the underlying congestion problem.
The performance of the model was tested using 372
benchmarks provided by Xilinx Inc. The experimental
results show that the model achieves a 25% improvement
in prediction accuracy compared to the machine-learning

model in [10]. The performance of the model also
performs favorably with that of a global router, as both
congestion estimation methods result in the same number
of routable placements, and both produce placements
with the same post-routing wirelength. However, the
runtimes of the two algorithms differ significantly, with
our model running, on average, 291x faster. Our future
work will focus on applying deep learning to the FPGA
congestion-estimation problem.

REFERENCES

[1] Z. Abuowaimer, D. Maarouf, T. Martin, J. Foxcroft, G. Grewal,
S. Areibi, and A. Vannelli. GPLace3.0: Routability Driven
Analytic Placer for UltraScale FPGA Architectures. ACM Trans-
action on Design Automation of Electronic Systems, In Press,
June 2018.

[2] S. Chen and Y. Change. FPGA Placement and Routing. In
International Conference on Computer Aided Design, pages 914–
921. ACM, 2017.

[3] Z. Dai and D. Banerji. Routability Prediction for Field Pro-
grammable Gate Arrays with a Routing Hierarchy. In Intl’
Conference on VLSI Design, pages 85–90, 2003.

[4] F. P. et al. Scikit-learn: Machine Learning in Python. J. Mach.
Learn. Res., 12:2825–2830, Nov. 2011.

[5] G. Grewal, S. Areibi, M. Westrik, Z. Abuowaimer, and B. Zhao.
Automatic Flow Selection and Quality-of-Result Estimation for
FPGA Placement. In 24th Reconfigurable Architectures Work-
shop, pages 115–123, Orlando, Florida, USA, May 2017.

[6] P. Kannan, S. Balachandran, and D. Bhatia. fGREP - Fast
Generic Routing Demand Estimation for Placed FPGA Circuits.
In International Conference on Field-Programmable Logic and
Applications, pages 37–47. Springer-Verlag, 2001.

[7] P. Kannan, S. Calachandran, and D. Bhatia. On Metrics for
Comparing Interconnect Estimation Methods for FPGAs. IEEE
Transactions on VLSI, pages 381–385, April 2004.

[8] R. Pattison, Z. Abuowaimer, S. Areibi, G. Grewal, and A. Van-
nelli. Invited Paper: GPlace - A Congestion-aware Placement tool
for UltraScale FPGAs. In Int’ Conference on Computer Aided
Design, pages 1–7, Austin, Texas, November 2016.

[9] C. Pui, G. Chen, W. Chow, K. Lam, P. Tu, H. Zhang, E. Young,
and B. Yu. RippleFPGA: A Routability-driven Placement for
Large-Scale Heterogeneous FPGAs. In International Conference
on Computer-Aided Design, pages 1–8, 2016.

[10] C. Pui, G. Chen, Y. Ma, E. Young, and B. Yu. Clock-Aware
UltraScale FPGA Placement with Machine Learning Routability
Prediction. In International Conference on Computer Aided
Design, pages 929–936. ACM, 2017.

[11] J. Swartz, V. Betz, and J. Rose. A Fast Routability-driven Router
for FPGAs. In Int’ Sym. on FPGAs, pages 140–149. ACM, 1998.

[12] Xilinx. ”A Tcl-based CAD Tool Framework for Xilinx’s Vivado
Design Suite”. https://github.com/byuccl/tincr.

[13] Xilinx. ISPD 2016 Routability-Driven FPGA Placement Contest.
http://www.ispd.cc/contests/16/ispd2016 contest.html. [accessed
2017-03-17].

[14] Xilinx. ”UltraScale Architecture Configurable Logic Block
User Guide”. http://www.xilinx.com/support/documentation/
user guides/ug574-ultrascale-clb.pdf.

[15] S. Yang, A. Gayasen, C. Mulpuri, S. Reddy, and R. Aggarwal.
Routability-Driven FPGA Placement Contest. In International
Symposium on Physical Design, pages 139–143. ACM, 2016.

[16] D. Yeager, D. Chiu, and G. Lemieux. Congestion Estimation and
Localization in FPGAs:: A Visual Tool for Interconnect Predic-
tion. In International Workshop on System Level Interconnect
Prediction, pages 33–40. ACM, 2007.

[17] Y. Zhuo, H. Li, and S. Mohanty. A Congestion Driven Placement
Algorithm for FPGA Synthesis. In Field Programmable Logic
and Applications, pages 683–686, September 2006.

