

Clock-Aware FPGA Placement Contest

Stephen Yang, Chandra Mulpuri, Sainath Reddy, Meghraj Kalase,

Srinivasan Dasasathyan, Mehrdad E. Dehkordi, Marvin Tom, Rajat Aggarwal
Xilinx Inc. 2100 Logic Drive San Jose, CA 95124

{stepheny,chandim,sainath,meghraj,sda,mehrdad,marvint,rajata}@xilinx.com

ABSTRACT

Modern FPGA device contains complex clocking architecture on

top of FPGA logic fabric. To best utilize FPGA clocking

architecture, both FPGA designers and EDA tool developers need

to understand the clocking architecture and design best

methodology/algorithm for various design styles. Clock

legalization and clock aware placement become one of the key

factors in FPGA design flow. They can greatly influence FPGA

design performance and routability. FPGA placement problem can

get very difficult with clock legalization constraints. This year’s

contest is a continuous challenge based on last year’s routability

driven placement. Contestants need to design best-in-class clock

aware placement approach to excel in the contest.

Keywords

FPGA; Placement; Clock; Legalization; Routability

1. INTRODUCTION
As modern FPGA architectures continue to evolve and designs

become more complex, FPGA placement remains to be one of the

most challenging problems in FPGA design flow [1]. Today’s

FPGA architecture imposes complicated layout rules during

placement stage. The benefit is that designers can ignore the

layout details and focus on logical and functional aspect. The tool

developers, however, need to improve placement, routing and

optimization algorithms to best achieve design goals while

meeting architecture constraints. Clock legalization rule, among

all the architectural constrains, has major impact on layout quality

including design timing performance and routability.

Routability-driven FPGA placement contest held in ISPD 2016

[2] successfully attracted attention from academic research

groups. 19 teams registered for the contest and 12 teams

submitted final version of the FPGA placement tool. FPGA

placement problem was well studied. New algorithms were tested

on academic format benchmarks based on modern FPGA

architecture. A number of FPGA placement papers have been

published [8][9][10][11].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from Permissions@acm.org.

ISPD’17, March 19–22, 2017, Portland, OR, USA.
© 2017 ACM. ISBN 978-1-4503-4696-2/17/03...$15.00.

DOI: http://dx.doi.org/10.1145/3036669.3038241

The contest of this year is an extension of ISPD 2016 contest. The

introduction of clock-aware concept gives placement problem a

new challenge. The best placement algorithm needs to find the

balance between getting the appropriate clock legalization

constraints and optimizing the basic placement quality.

2. FPGA ARCHITECTURE

2.1 FPGA Programmable Blocks

Xilinx FPGAs [3], an example of which is illustrated in Figure 1,

consist of an array of programmable blocks of different types,

including general logic (CLB), memory (BRAM) and multiplier

(DSP) blocks, surrounded by a programmable routing fabric

(interconnect) that allows these blocks to be connected via

horizontal and vertical routing channels. This array is surrounded

by programmable input/output blocks (IO) that interface the chip

to the outside world.

Figure 1. Example of Xilinx FPGA Architecture

This array has a configuration memory (SRAM) beneath it,

which, when loaded with appropriate bits, programs the blocks

and the interconnects to behave a certain way, as illustrated in

Figure 2.

Given a logic design that the user wants to implement on the

FPGA, the Xilinx Implementation Tool flow (Vivado) converts

the design into the appropriate set of configuration bits (bitstream)

which is loaded onto the SRAM to make the FPGA behave as the

design. There are usually multiple steps involved in this tool flow,

the main ones being, Synthesis, Placement, Routing, and

Bitstream generation.

159

http://dx.doi.org/10.1145/3036669.3038241

Figure 2. Example of Programming the Xilinx FPGA

Synthesis tool infers the design logic in terms of the logic blocks

available within the FPGA. Placement tool places these inferred

logic blocks on the various sites of physical logic blocks present

in the FPGA. Routing tool connects up the pins of these physical

logic blocks using the programmable interconnect routing

structures in the FPGA. Bitstream generation tool then proceeds to

generate the set of configuration bits that program these logic

blocks and interconnect routing structures to behave as the design

intended.

The general logic block (also referred to as the configurable logic

block, or CLB), is the main resource for implementing general-

purpose combinatorial and sequential circuits. The CLB is made

up of the logic elements themselves, which are grouped together

into a slice. These logic elements are of the type lookup tables

(LUTs) or sequential elements (FFs). Each CLB contains one

slice. Each slice provides sixteen LUTs and sixteen flip-flops. The

slices and their CLBs are arranged in columns throughout the

device. There are, however, certain restrictions pertaining to how

these LUTs and FFs can be used within each slice. These are

explained in detail in the “Placement Evaluation Flow” section

under “Legalization Rules” subsection.

In the specific Xilinx FPGA we’re targeting for this contest, the

XCVU095-ffva2104-es2 device, we have 67,200 CLB/SLICE

locations, 880 usable IO locations, 770 DSP locations, and 1730

BRAM locations. More information on this device, and the

architecture in general, can be obtained from [5].

2.2 Clocking Architecture

Xilinx UltraScale Architecture introduces a new ASIC-like

clocking architecture to the FPGA world. One main feature of this

new architecture is the abundance of clocking resources. For

example, the biggest device can accommodate more than 600 total

clocking buffers. The architecture also introduces a mesh-like

routing structure for routing clocks from clock sources all the way

to all loads. Such routing structure allows the software tools to

make smart choices of how the clocks are placed and routed in a

way that have not been feasible in any other FPGA architecture.

The clock placement problem can be stated as the problem of

assigning clocking components of a design to compatible clocking

resources on a device. In the simplest form, clocking components

consist of clock sources and clock loads. Clock sources are

components that generate clock signals and/or derive dedicated

clock nets using dedicated clocking trees. Clock loads are

sequential components that capture data with respect to the input

clock signal.

Clock source placement is usually done early in the placement

flow along with general IO placement, and it heavily depends on

architectural rules imposed by the device constraints. Clock load

placement, specifically for non-IO clock loads, is taken care by

the general placement flow. This usually starts with a global

placement of all placeable components, where an approximate

location is found for each component. This is followed by a

detailed placement, where a legal placement is created and each

component is assigned to a physical site on the device.

At early stages in the global placement flow, the clock loads are

partitioned based on their placement at the time. The Clock load

partitioning is driven by clocking architectural constraints.

Without a correct clock load partitioning the final placement

solution could be illegal, i.e., no routing solution would be

available.

The clock placement and partitioning approach explained above is

independent of the how the clocks are routed. But this approach is

not enough to create legal clocking solutions. A clock partitioning

solution that combines the problems of clock partitioning and

clock routing, is needed to produce legal clocking solution and

optimize clocking network for better skew, hold requirement, and

insertion delay.

Figure 3. Clock Region Boundaries in an UltraScale device

Each FPGA device in this architecture is divided into multiple

clock regions. A clock region includes all synchronous elements--

Configurable Logic Block (CLB), I/O, high speed transceivers

(GT), DSP, block RAM, and so on-- in an area spanning one I/O

bank, with a horizontal clock row (HROW) in its center. Figure 3

shows clock region divisions for one of the UltraScale devices.

This particular device is divided into a 4x5 rectangular grid of 20

clock regions. Note that some clock regions may contain an IO

bank or a GT quad. Clock source buffers are inside the IO and GT

columns. So clocks can only be sourced from such clock regions.

The clock routing structure consists of a two-layer network of

routing tracks as detailed below:

 A routing network consisting of 24 horizontal and 24 vertical

tracks

IO columns containing

clock sources buffers

GT column containing GT-

specific clock source buffers

Clock Region Boundary

CLB/BRAM/DSP columns

160

o There is a one-to-one bidirectional connection between any

two horizontal routing and vertical routing tracks in each

clock region. For example, for a clock using horizontal

routing track 0, it can switch to vertical routing track 0 at

their intersection in one clock region and back to horizontal

routing track 0 in another clock region.

o There is no vertical routing track in IO or GT columns.

 A distribution network, also consisting of 24 horizontal and 24

vertical tracks

o There is a one-to-one unidirectional connection (from

vertical to horizontal) between any two horizontal

distribution and vertical distribution tracks in each clock

region. For example, for a clock using vertical distribution

track 0, it can switch to horizontal distribution track 0 at any

possible intersection.

o There is no vertical distribution track in GT columns.

There is no path from distribution back to routing tracks. So once

a clock is on the distribution network it can only go to the leaf

level nodes. From routing (horizontal or vertical) to distribution

network clocks need to hop onto vertical distribution first. There

is a one-to-one connection from every routing (horizontal or

vertical) to its corresponding vertical distribution track.

The clock can be distributed from the sources in one of two ways.

They can go onto routing tracks which take the clock to a

particular sub-region without going to any loads and then go onto

the distribution tracks. This is used to move the root for all the

loads to be at a location beneficial from a skew perspective.

Alternatively, they can go straight onto the distribution tracks.

This would be to reduce insertion delay or that point being the

root is most beneficial for skew. Once on the distribution tracks,

the clock travels vertically and taps off at various horizontal

segments. Before driving the horizontal segment it would go

through a programmable delay and clock enable circuit. From the

horizontal distribution it can feed the leaf clocks.

Each clock segment can be driven at either end or by a driver

within the segment. Each of those drivers therefore would be tri-

stable. This allows the clock network to be segmented at each

fabric sub-region boundary. By having the clock only use

segments as needed, it allows the tracks to be reused.

The clock routing structure consists of a two-layer network of

routing tracks as detailed below:

• A routing network consisting of 24 horizontal and 24 vertical

tracks

• A distribution network, also consisting of 24 horizontal and

24 vertical tracks

• Each clock region has 24 horizontal routing (HR) and 24

vertical routing (VR) tracks

• Each clock region has 24 horizontal distribution (HD) and 24

vertical distribution (VD) tracks

• There is a one-to-one bidirectional connection between any

two HR and VR tracks in each clock region. For example, for

a clock using HR track 0, it can switch to VR track 0 at their

intersection in one clock region and back to HR track 0 in

another clock region

• There is a one-to-one unidirectional connection from VD to

HD in each clock region. For example, for a clock using VD

track 0, it can switch HD track 0

• Once on HD, clock only drives HD tracks on neighboring

clock regions or clock loads in that region. There is no way

back on HR/VR/VD tracks

• From HR/VR to distribution network clocks need to hop onto

VD first. There is a one-to-one connection from every

routing (horizontal or vertical) to its corresponding VD track

• All tracks are segmented at clock region boundaries,

therefore two clocks can use the same track provided that

their loads are in non-intersecting rectangular clock region

areas

• Each clock net should use a single clock track and a single

clock root

• Each global clock buffer has a dedicated clock track that can

only be driven by that clock buffer. The Y coordinate of the

site where the clock buffer is placed at can be used to specify

the track number for that given site. So for BUFGCE_XmYn

the clock track number will be n%24

• Within a clock region, global clock buffer locations can be

changed without affecting design legality

2.3 Clock Placement Problem

Place all clock sources and clock loads and partition the clock

loads into partitions containing one or more clock regions, such

that

 Number of global clocks in each clock region is at most 24

clocks.

 Within each clock region, each half column has at most 12

clocks.

 Each clock region has enough resources to accommodate all

clock loads assigned to that region.

 If needed, all loads of each clock should be constrained to a

continuous rectangular area consisting of one or more clock

regions.

3. BENCHMARKS
The benchmarks for ISPD 2017 clock placement contest have

been generated using an internal netlist-generation tool based on

Generate NetList (GNL [7]). The tool allows us to create netlists

which varies in features such as number of components,

interconnection, number of control sets, number of clocks.

Additionally, it provides control over the type of components

(primitives) used in the netlist. For ISPD 2017 benchmarks, we

have restricted the primitives to be Look-Up-Tables (LUTs), Flip-

Flops (FFs), DSP blocks (DSPs),

161

and Block RAMs (BRAMs). We have varied number of

primitives of different types, interconnection complexity, number

of clocks to create netlist of varied complexity. The target device

chosen was xcvu095, part of the Virtex UltraScale [4] family.

Figure 4. Benchmark Generation Flow

The following properties of the netlist were varied among the

ISPD benchmarks.

• Number of instance: We have created benchmarks that utilize

between 40% and 85% of the available LUTs. Proportionally

we have also varied the number of DSPs, BRAMs, and FFs

to create medium to highly utilized designs.

• Rent exponent: Interconnection complexity were varied to

create netlists of different Rent exponents. This is important

to test the routability aspect of the placement solution.

• Number of clock: Further complex designs were created by

varying the number of clocks from 30 to 57.

• Number of Resets: FPGA architecture limits the number of

unique reset nets per Slice. By varying the number of resets

we test how well the placer can support such restrictions.

Figure 4 explains the flow used for generating these benchmarks.

First, we generate structural Verilog using our netlist-generation

tool. The input to this tool is a configuration file, which specifies

the desired parameters in the netlist. The structural Verilog file is

post-processed to create a flattened design, without any

hierarchies. Along with dissolving hierarchies, we also rename the

instances and nets in this step. Next, we run Vivado placer to

place IO ports of the design. Finally, we write the benchmark in

Bookshelf format. The Bookshelf format list the instances in the

design in a “.nodes” file and their interconnection in a “.nets” file.

It also writes IO placement in a “.pl” file. Library cells are

separately listed in a “*.lib” file.

4. PLACEMENT EVALUATION
The placement evaluation flow is similar to ISPD 2016 contest

[2]. The major difference is on the clock legalization check. Total

wirelength is the main evaluation metric. Clock skew and timing

are not part of the metrics in this contest.

4.1 Placement Interface
Contestants are expected to write the output of their placement

tool in a specific (.pl) file format. Placer's output placement file

should contain locations of all the instances in the design. The

location of an instance has three fields: x-coord, y-coord (to

determine the SITE) and BEL (index within the SITE). Figure 5

shows the BEL number for LUTs/FFs placed inside a SLICE

SITE.

For BRAM and DSP instances, since there are no BELs within a

SITE, the BEL index remains 0.

Design Name #Luts (Util) #Flops (Util) #RAMB36 #DSPs #IOs Rent #Clocks

design5 215K(40%) 236K(22%) 170(10%) 75(10%) 300 0.6 30

design6 242K(45%) 270K(25%) 255(15%) 112(15%) 300 0.6 33

design7 268K(50%) 300K928%) 340(20%) 150(20%) 300 0.6 36

design8 295K(55%) 325K(30%) 425(25%) 187(25%) 300 0.6 39

design9 322K(60%) 354K(33%) 510(30%) 225(30%) 400 0.63 42

design10 350K(65%) 384K(36%) 595(35%) 262(35%) 400 0.63 45

design11 376K(70%) 414K(38%) 680(40%) 300(40%) 400 0.63 48

design12 392K(73%) 431K(40%) 765(45%) 337(45%) 400 0.63 51

design13 408K(76%) 449K(42%) 850(50%) 375(50%) 400 0.63 54

design14 424K(79%) 450K(43%) 900(53%) 397(53%) 400 0.63 55

design15 440K(82%) 484K(45%) 950(56%) 420(56%) 400 0.63 56

design16 456K(85%) 503K(47%) 1000(59%) 442(59%) 400 0.63 57

Table 1. Benchmark statistics

*Number in parenthesis indicates the utilization as percentage of available resources in the FPGA [6]

162

Figure 5. BEL offsets within a SLICE

The placement output (.pl) file, will be given as an input to Xilinx

Vivado tool using the flow.tcl file, which is available as part of

each benchmarks archive. Vivado Placer will then read these

instance placements, and check for legal placement on every

instance. In case of illegal placement, Vivado Placer will error out

with a reason behind the illegality for each instance. If the

placement is legal, Vivado router starts and completes routing, or

report unroutable design. If routing completes successfully, the

following message indicates total routed wirelength: “Total

Routed Wirelength: xxxxx (Vertical xxxx, Horizontal xxxx)”. In

case of unroutable placement, the following message shows up:

“CRITICAL WARNING: [Route 35-162] xxxx signals failed to

route due to routing congestion.”

4.2 Legalization Rules
Each SLICE site provides sixteen LUTs and sixteen FFs. There

are, however, certain restrictions pertaining to how these LUTs

and FFs can be used within each SLICE.

4.2.1 Clock Legalization Rules

 Number of global clocks in each clock region is at most 24

clocks.

 Within each clock region, each half column has at most 12

clocks.

 Each clock region has enough resources to accommodate all

clock loads assigned to that region.

4.2.2 Using LUTs in a SLICE:

 The 16 LUTs within SLICE are conceptual LUTs that can

only be fully used under certain conditions:

 When implementing a 6-input LUT with one output, one

can only use LUT 1 (leaving LUT 0 unused) or LUT 3

(leaving LUT 2 unused) or ... or LUT 15 (leaving LUT 14

unused)

 When implementing two 5-input LUTs with separate

outputs but common inputs, one can use {LUT 0, LUT 1}

or {LUT 2, LUT 3} or ... or {LUT 14, LUT 15}

 The above rule of coming LUTs with separate outputs but

common inputs, holds good for 5-input LUTs (as

mentioned above) or fewer input LUTs as well

 When implementing two 3-input (or fewer input) LUTs

together (irrespective of common inputs), one can use

{LUT 0, LUT 1} or {LUT 2, LUT 3} or ... or {LUT 14,

LUT 15}

4.2.3 Using FFs in a SLICE:

 There are 16 FFs per SLICE (two per LUT pair), and all

can be used fully under certain conditions:

 All FFs can take independent inputs from outside the

SLICE, or outputs of their corresponding LUT pair (FF 0

can take LUT 0 or LUT 1 output as input, ..., FF 15 can

take LUT 14 or LUT 15 output as input)

 All can be configured as either edge-triggered D-type flip-

flops or level-sensitive latches. The latch option is by top

or bottom half of the SLICE (0 to 7, and 8 to 15). If the

latch option is selected on a FF, all eight FFs in that half

must be either used as latches or left unused. When

configured as a latch, the latch is transparent when the

clock input (CLK) is high.

 There are two clock inputs (CLK) and two set/reset inputs

(SR) to every SLICE for the FFs. Each clock or set/reset

input is dedicated to eight of the sixteen FFs, split by top

and bottom halves (0 to 7, and 8 to 15). FF pairs ({0,1} or

{2,3} or ... or {14,15}) share the same clock and set/reset

signals. The clock and set/reset signals have programmable

polarity at their slice inputs, allowing any inversion to be

automatically absorbed into the CLB.

 There are four clock enables (CE) per SLICE. The clock

enables are split both by top and bottom halves, and by the

two FFs per LUT-pair. Thus, the CEs are independent for:

{FF 0, FF 2, FF 4, FF 6}, {FF 1, FF 3, FF 5, FF 7}, {FF 8,

FF 10, FF 12, FF 14}, {FF 9, FF 11, FF 13, FF 15}. When

one storage element has CE enabled, the other three

storage elements in the group must also have CE enabled.

The CE is always active High at the slice, but can be

inverted in the source logic.

 The two SR set/reset inputs to a SLICE can be

programmed to be synchronous or asynchronous. The

set/reset signal can be programmed to be a set or reset, but

not both, for any individual FF. The configuration options

for the SR set and reset functionality of a register or latch

are: No set or reset, Synchronous set (FDSE primitive),

Synchronous reset (FDRE primitive), Asynchronous set

(preset) (FDPE primitive), Asynchronous reset (clear)

(FDCE primitive). The SR set/reset input can be ignored

for groups of four flip-flops (the same groups as controlled

by the CE inputs). When one FF has SR enabled, the other

three FFs in the group must also have SR enabled.

 The choice of set or reset can be controlled individually for

each FF in a SLICE. The choice of synchronous (SYNC)

or asynchronous (ASYNC) set/reset (SYNC_ATTR) is

163

controlled in groups of eight FFs, individually for the two

separate SR inputs.

Some of these FF Packing rules are illustrated in Figure 6.

Figure 6. Flip Flop control signals connectivity within a

SLICE

More information on the CLB composition can be obtained from

[5]

4.3 Evaluation Metrics
 For each design in the benchmark suite, the placers will be

ranked based on the contest evaluation metric. The final

rank for a placer will be the sum of the individual ranks on

all the circuits. The placer with the smallest total rank wins

the contest.

 The placement runtime must be 12 hours or shorter.

 The placement must be legal in terms of logic legalization.

 The placement must be legal in terms of clock legalization

rules described in Section 2.

 The placement has to be routed by Vivado router, and the

router has to complete the job within 12 hours. Routing is

regarded as failed if it takes more than 12 hours to

complete.

 PlacementScore=RoutedWirelength*(1 + Runtime_Factor)

o Vivado router reports total routed wirelength. This is

the base of the score.

o Total placement and routing runtime will be used in

computing P&R_Runtime_Factor;

o Runtime_Factor= -(Runtime - Median_Runtime) / 10.0

o Runtime factor is between -10% and +10%

 The failed place/route job will get the lowest rank on this

design. In the presence of failures on multiple placers, the

break-tie factors are (in order): placer failure, logic

legalization failure, clock legalization failure, router

failure.

5. ACKNOWLEDGMENTS
The authors would like to thank Dr. Sudip Nag, Dr. Padmini

Gopalakrishnan and Dr. Sabya Das for their support.

6. REFERENCES
[1] R. Aggarwal, FPGA Place and Route Challenges,

International Symposium on Physical Design. 2014

[2] S. Yang, A. Gayasen, C. Mulpuri, S. Reddy, and R.

Aggarwal, Routability-Driven FPGA Placement Contest,

International Symposium on Physical Design, 2016

[3] Xilinx, “UltraScale Architecture”,

http://www.xilinx.com/products/technology/ultrascale.html

[4] Xilinx, “Virtex UltraScale FPGAs”,

http://www.xilinx.com/publications/prod_mktg/ultrascalevirt

ex-product-table

[5] Xilinx, “UltraScale Architecture Configurable Logic Block

User Guide”,

http://www.xilinx.com/support/documentation/user_guides/u

g574-ultrascale-clb.pdf

[6] Xilinx, “UltraScale Architecture and Product Overview”,

http://www.xilinx.com/support/documentation/data_sheets/ds

890-ultrascale-overview.pdf

[7] GNL: http://users.elis.ugent.be/~dstrooba/gnl/

[8] W. Li, S. Dhah, and D. Z. Pan, “UTPlaceF: A Routability-

Driven FPGA Placer with Physical and Congestion Aware

Packing”, International Conference on Computer-Aided

Design (ICCAD), 2016

[9] C.W. Pui, G. Chen, W.K. Chow, K.C. Lam, J. Kuang, P. Tu,

H. Zhang, F.Y. Young, B. Yu, “RippleFPGA: A Routability-

Driven Placement for Large-Scale Heterogeneous FPGAs”,

International Conference on Computer-Aided Design

(ICCAD), 2016

[10] R. Pattison, Z. Abuowaimer, S. Areibi, G. Grewal, A.

Vannelli, “GPlace – A Congestion-aware Placement tool for

UltraScale FPGAs “, International Conference on Computer-

Aided Design (ICCAD), 2016

[11] S. Dhah, S. Adya, L. Singhal, M. A. Iyer and D. Z. Pan

“Detailed Placement for Modern FPGAs using 2D Dynamic

Programming”, International Conference on Computer-

Aided Design (ICCAD), 2016

164

http://www.xilinx.com/products/technology/ultrascale.html
http://www.xilinx.com/support/documentation/data_sheets/ds890-ultrascale-overview.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds890-ultrascale-overview.pdf
http://users.elis.ugent.be/~dstrooba/gnl/

