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ABSTRACT 

Modern FPGA device contains complex clocking architecture on 

top of FPGA logic fabric. To best utilize FPGA clocking 

architecture, both FPGA designers and EDA tool developers need 

to understand the clocking architecture and design best 

methodology/algorithm for various design styles. Clock 

legalization and clock aware placement become one of the key 

factors in FPGA design flow. They can greatly influence FPGA 

design performance and routability. FPGA placement problem can 

get very difficult with clock legalization constraints. This year’s 

contest is a continuous challenge based on last year’s routability 

driven placement. Contestants need to design best-in-class clock 

aware placement approach to excel in the contest. 
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1. INTRODUCTION 
As modern FPGA architectures continue to evolve and designs 

become more complex, FPGA placement remains to be one of the 

most challenging problems in FPGA design flow [1]. Today’s 

FPGA architecture imposes complicated layout rules during 

placement stage. The benefit is that designers can ignore the 

layout details and focus on logical and functional aspect. The tool 

developers, however, need to improve placement, routing and 

optimization algorithms to best achieve design goals while 

meeting architecture constraints. Clock legalization rule, among 

all the architectural constrains, has major impact on layout quality 

including design timing performance and routability. 

Routability-driven FPGA placement contest held in ISPD 2016 

[2] successfully attracted attention from academic research 

groups. 19 teams registered for the contest and 12 teams 

submitted final version of the FPGA placement tool. FPGA 

placement problem was well studied. New algorithms were tested 

on academic format benchmarks based on modern FPGA 

architecture. A number of FPGA placement papers have been 

published [8][9][10][11]. 
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The contest of this year is an extension of ISPD 2016 contest. The 

introduction of clock-aware concept gives placement problem a 

new challenge. The best placement algorithm needs to find the 

balance between getting the appropriate clock legalization 

constraints and optimizing the basic placement quality.  

 

2.  FPGA ARCHITECTURE  

2.1 FPGA Programmable Blocks 

Xilinx FPGAs [3], an example of which is illustrated in Figure 1, 

consist of an array of programmable blocks of different types, 

including general logic (CLB), memory (BRAM) and multiplier 

(DSP) blocks, surrounded by a programmable routing fabric 

(interconnect) that allows these blocks to be connected via 

horizontal and vertical routing channels. This array is surrounded 

by programmable input/output blocks (IO) that interface the chip 

to the outside world.  

  

Figure 1. Example of Xilinx FPGA Architecture 

This array has a configuration memory (SRAM) beneath it, 

which, when loaded with appropriate bits, programs the blocks 

and the interconnects to behave a certain way, as illustrated in 

Figure 2. 

Given a logic design that the user wants to implement on the 

FPGA, the Xilinx Implementation Tool flow (Vivado) converts 

the design into the appropriate set of configuration bits (bitstream) 

which is loaded onto the SRAM to make the FPGA behave as the 

design. There are usually multiple steps involved in this tool flow, 

the main ones being, Synthesis, Placement, Routing, and 

Bitstream generation. 
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Figure 2. Example of Programming the Xilinx FPGA 

 

Synthesis tool infers the design logic in terms of the logic blocks 

available within the FPGA. Placement tool places these inferred 

logic blocks on the various sites of physical logic blocks present 

in the FPGA. Routing tool connects up the pins of these physical 

logic blocks using the programmable interconnect routing 

structures in the FPGA. Bitstream generation tool then proceeds to 

generate the set of configuration bits that program these logic 

blocks and interconnect routing structures to behave as the design 

intended. 

The general logic block (also referred to as the configurable logic 

block, or CLB), is the main resource for implementing general-

purpose combinatorial and sequential circuits. The CLB is made 

up of the logic elements themselves, which are grouped together 

into a slice. These logic elements are of the type lookup tables 

(LUTs) or sequential elements (FFs). Each CLB contains one 

slice. Each slice provides sixteen LUTs and sixteen flip-flops. The 

slices and their CLBs are arranged in columns throughout the 

device. There are, however, certain restrictions pertaining to how 

these LUTs and FFs can be used within each slice. These are 

explained in detail in the “Placement Evaluation Flow” section 

under “Legalization Rules” subsection. 

In the specific Xilinx FPGA we’re targeting for this contest, the 

XCVU095-ffva2104-es2 device, we have 67,200 CLB/SLICE 

locations, 880 usable IO locations, 770 DSP locations, and 1730 

BRAM locations. More information on this device, and the 

architecture in general, can be obtained from [5].  

2.2 Clocking Architecture 

Xilinx UltraScale Architecture introduces a new ASIC-like 

clocking architecture to the FPGA world. One main feature of this 

new architecture is the abundance of clocking resources. For 

example, the biggest device can accommodate more than 600 total 

clocking buffers. The architecture also introduces a mesh-like 

routing structure for routing clocks from clock sources all the way 

to all loads. Such routing structure allows the software tools to 

make smart choices of how the clocks are placed and routed in a 

way that have not been feasible in any other FPGA architecture. 

 

The clock placement problem can be stated as the problem of 

assigning clocking components of a design to compatible clocking 

resources on a device. In the simplest form, clocking components 

consist of clock sources and clock loads. Clock sources are 

components that generate clock signals and/or derive dedicated 

clock nets using dedicated clocking trees. Clock loads are 

sequential components that capture data with respect to the input 

clock signal. 

Clock source placement is usually done early in the placement 

flow along with general IO placement, and it heavily depends on 

architectural rules imposed by the device constraints. Clock load 

placement, specifically for non-IO clock loads, is taken care by 

the general placement flow. This usually starts with a global 

placement of all placeable components, where an approximate 

location is found for each component. This is followed by a 

detailed placement, where a legal placement is created and each 

component is assigned to a physical site on the device. 

At early stages in the global placement flow, the clock loads are 

partitioned based on their placement at the time. The Clock load 

partitioning is driven by clocking architectural constraints. 

Without a correct clock load partitioning the final placement 

solution could be illegal, i.e., no routing solution would be 

available.  

The clock placement and partitioning approach explained above is 

independent of the how the clocks are routed. But this approach is 

not enough to create legal clocking solutions. A clock partitioning 

solution that combines the problems of clock partitioning and 

clock routing, is needed to produce legal clocking solution and 

optimize clocking network for better skew, hold requirement, and 

insertion delay.  

 

Figure 3. Clock Region Boundaries in an UltraScale device 

 

Each FPGA device in this architecture is divided into multiple 

clock regions. A clock region includes all synchronous elements--

Configurable Logic Block (CLB), I/O, high speed transceivers 

(GT), DSP, block RAM, and so on-- in an area spanning one I/O 

bank, with a horizontal clock row (HROW) in its center. Figure 3 

shows clock region divisions for one of the UltraScale devices.  

This particular device is divided into a 4x5 rectangular grid of 20 

clock regions. Note that some clock regions may contain an IO 

bank or a GT quad. Clock source buffers are inside the IO and GT 

columns. So clocks can only be sourced from such clock regions. 

The clock routing structure consists of a two-layer network of 

routing tracks as detailed below:  

 A routing network consisting of 24 horizontal and 24 vertical 

tracks  

IO columns containing 

clock sources buffers 

GT column containing GT-

specific clock source buffers 
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o There is a one-to-one bidirectional connection between any 

two horizontal routing and vertical routing tracks in each 

clock region. For example, for a clock using horizontal 

routing track 0, it can switch to vertical routing track 0 at 

their intersection in one clock region and back to horizontal 

routing track 0 in another clock region. 

o There is no vertical routing track in IO or GT columns. 

 A distribution network, also consisting of 24 horizontal and 24 

vertical tracks  

o There is a one-to-one unidirectional connection (from 

vertical to horizontal) between any two horizontal 

distribution and vertical distribution tracks in each clock 

region. For example, for a clock using vertical distribution 

track 0, it can switch to horizontal distribution track 0 at any 

possible intersection. 

o There is no vertical distribution track in GT columns. 

There is no path from distribution back to routing tracks. So once 

a clock is on the distribution network it can only go to the leaf 

level nodes. From routing (horizontal or vertical) to distribution 

network clocks need to hop onto vertical distribution first. There 

is a one-to-one connection from every routing (horizontal or 

vertical) to its corresponding vertical distribution track. 

The clock can be distributed from the sources in one of two ways. 

They can go onto routing tracks which take the clock to a 

particular sub-region without going to any loads and then go onto 

the distribution tracks. This is used to move the root for all the 

loads to be at a location beneficial from a skew perspective. 

Alternatively, they can go straight onto the distribution tracks. 

This would be to reduce insertion delay or that point being the 

root is most beneficial for skew. Once on the distribution tracks, 

the clock travels vertically and taps off at various horizontal 

segments. Before driving the horizontal segment it would go 

through a programmable delay and clock enable circuit. From the 

horizontal distribution it can feed the leaf clocks. 

Each clock segment can be driven at either end or by a driver 

within the segment. Each of those drivers therefore would be tri-

stable. This allows the clock network to be segmented at each 

fabric sub-region boundary. By having the clock only use 

segments as needed, it allows the tracks to be reused.  

The clock routing structure consists of a two-layer network of 

routing tracks as detailed below:  

• A routing network consisting of 24 horizontal and 24 vertical 

tracks 

• A distribution network, also consisting of 24 horizontal and 

24 vertical tracks 

• Each clock region has 24 horizontal routing (HR) and 24 

vertical routing (VR) tracks 

• Each clock region has 24 horizontal distribution (HD) and 24 

vertical distribution (VD) tracks 

• There is a one-to-one bidirectional connection between any 

two HR and VR tracks in each clock region. For example, for 

a clock using HR track 0, it can switch to VR track 0 at their 

intersection in one clock region and back to HR track 0 in 

another clock region 

• There is a one-to-one unidirectional connection from VD to 

HD in each clock region. For example, for a clock using VD 

track 0, it can switch HD track 0 

• Once on HD, clock only drives HD tracks on neighboring 

clock regions or clock loads in that region. There is no way 

back on HR/VR/VD tracks 

• From HR/VR to distribution network clocks need to hop onto 

VD first. There is a one-to-one connection from every 

routing (horizontal or vertical) to its corresponding VD track 

• All tracks are segmented at clock region boundaries, 

therefore two clocks can use the same track provided that 

their loads are in non-intersecting rectangular clock region 

areas 

• Each clock net should use a single clock track and a single 

clock root 

• Each global clock buffer has a dedicated clock track that can 

only be driven by that clock buffer. The Y coordinate of the 

site where the clock buffer is placed at can be used to specify 

the track number for that given site. So for BUFGCE_XmYn 

the clock track number will be n%24 

• Within a clock region, global clock buffer locations can be 

changed without affecting design legality 

2.3 Clock Placement Problem 

Place all clock sources and clock loads and partition the clock 

loads into partitions containing one or more clock regions, such 

that  

 Number of global clocks in each clock region is at most 24 

clocks.  

 Within each clock region, each half column has at most 12 

clocks. 

 Each clock region has enough resources to accommodate all 

clock loads assigned to that region. 

 If needed, all loads of each clock should be constrained to a 

continuous rectangular area consisting of one or more clock 

regions. 

 

3. BENCHMARKS 
The benchmarks for ISPD 2017 clock placement contest have 

been generated using an internal netlist-generation tool based on 

Generate NetList (GNL [7]). The tool allows us to create netlists 

which varies in features such as number of components, 

interconnection, number of control sets, number of clocks. 

Additionally, it provides control over the type of components 

(primitives) used in the netlist.  For ISPD 2017 benchmarks, we 

have restricted the primitives to be Look-Up-Tables (LUTs), Flip-

Flops (FFs), DSP blocks (DSPs),  
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and Block RAMs (BRAMs). We have varied number of 

primitives of different types, interconnection complexity, number 

of clocks to create netlist of varied complexity. The target device 

chosen was xcvu095, part of the Virtex UltraScale [4] family.  

 

 

Figure 4. Benchmark Generation Flow 

 

The following properties of the netlist were varied among the 

ISPD benchmarks. 

• Number of instance: We have created benchmarks that utilize 

between 40% and 85% of the available LUTs. Proportionally 

we have also varied the number of DSPs, BRAMs, and FFs 

to create medium to highly utilized designs. 

• Rent exponent:  Interconnection complexity were varied to 

create netlists of different Rent exponents. This is important 

to test the routability aspect of the placement solution. 

• Number of clock:  Further complex designs were created by 

varying the number of clocks from 30 to 57. 

• Number of Resets:  FPGA architecture limits the number of 

unique reset nets per Slice. By varying the number of resets 

we test how well the placer can support such restrictions.  

Figure 4 explains the flow used for generating these benchmarks. 

First, we generate structural Verilog using our netlist-generation 

tool. The input to this tool is a configuration file, which specifies 

the desired parameters in the netlist. The structural Verilog file is 

post-processed to create a flattened design, without any 

hierarchies. Along with dissolving hierarchies, we also rename the 

instances and nets in this step. Next, we run Vivado placer to 

place IO ports of the design. Finally, we write the benchmark in 

Bookshelf format. The Bookshelf format list the instances in the 

design in a “.nodes” file and their interconnection in a “.nets” file. 

It also writes IO placement in a “.pl” file. Library cells are 

separately listed in a “*.lib” file. 

 

4. PLACEMENT EVALUATION 
The placement evaluation flow is similar to ISPD 2016 contest 

[2]. The major difference is on the clock legalization check. Total 

wirelength is the main evaluation metric. Clock skew and timing 

are not part of the metrics in this contest. 

 

4.1 Placement Interface 
Contestants are expected to write the output of their placement 

tool in a specific (.pl) file format. Placer's output placement file 

should contain locations of all the instances in the design. The 

location of an instance has three fields: x-coord, y-coord (to 

determine the SITE) and BEL (index within the SITE). Figure 5 

shows the BEL number for LUTs/FFs placed inside a SLICE 

SITE. 

For BRAM and DSP instances, since there are no BELs within a 

SITE, the BEL index remains 0. 

Design Name #Luts (Util)  #Flops (Util) #RAMB36 #DSPs #IOs Rent #Clocks 

design5 215K(40%) 236K(22%) 170(10%) 75(10%) 300 0.6 30 

design6 242K(45%) 270K(25%) 255(15%) 112(15%) 300 0.6 33 

design7 268K(50%) 300K928%) 340(20%) 150(20%) 300 0.6 36 

design8 295K(55%) 325K(30%) 425(25%) 187(25%) 300 0.6 39 

design9 322K(60%) 354K(33%) 510(30%) 225(30%) 400 0.63 42 

design10 350K(65%) 384K(36%) 595(35%) 262(35%) 400 0.63 45 

design11 376K(70%) 414K(38%) 680(40%) 300(40%) 400 0.63 48 

design12 392K(73%) 431K(40%) 765(45%) 337(45%) 400 0.63 51 

design13 408K(76%) 449K(42%) 850(50%) 375(50%) 400 0.63 54 

design14 424K(79%) 450K(43%) 900(53%) 397(53%) 400 0.63 55 

design15 440K(82%) 484K(45%) 950(56%) 420(56%) 400 0.63 56 

design16 456K(85%) 503K(47%) 1000(59%) 442(59%) 400 0.63 57 

Table 1. Benchmark statistics 

*Number in parenthesis indicates the utilization as percentage of available resources in the FPGA [6] 
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Figure 5. BEL offsets within a SLICE 

The placement output (.pl) file, will be given as an input to Xilinx 

Vivado tool using the flow.tcl file, which is available as part of 

each benchmarks archive. Vivado Placer will then read these 

instance placements, and check for legal placement on every 

instance. In case of illegal placement, Vivado Placer will error out 

with a reason behind the illegality for each instance. If the 

placement is legal, Vivado router starts and completes routing, or 

report unroutable design. If routing completes successfully, the 

following message indicates total routed wirelength: “Total 

Routed Wirelength: xxxxx (Vertical xxxx, Horizontal xxxx)”. In 

case of unroutable placement, the following message shows up: 

“CRITICAL WARNING: [Route 35-162] xxxx signals failed to 

route due to routing congestion.”  

 

4.2 Legalization Rules 
Each SLICE site provides sixteen LUTs and sixteen FFs. There 

are, however, certain restrictions pertaining to how these LUTs 

and FFs can be used within each SLICE. 

 

4.2.1  Clock Legalization Rules 

 Number of global clocks in each clock region is at most 24 

clocks.  

 Within each clock region, each half column has at most 12 

clocks. 

 Each clock region has enough resources to accommodate all 

clock loads assigned to that region. 

4.2.2  Using LUTs in a SLICE: 

 The 16 LUTs within SLICE are conceptual LUTs that can 

only be fully used under certain conditions: 

 When implementing a 6-input LUT with one output, one 

can only use LUT 1 (leaving LUT 0 unused) or LUT 3 

(leaving LUT 2 unused) or ... or LUT 15 (leaving LUT 14 

unused) 

 When implementing two 5-input LUTs with separate 

outputs but common inputs, one can use {LUT 0, LUT 1} 

or {LUT 2, LUT 3} or ... or {LUT 14, LUT 15} 

 The above rule of coming LUTs with separate outputs but 

common inputs, holds good for 5-input LUTs (as 

mentioned above) or fewer input LUTs as well 

 When implementing two 3-input (or fewer input) LUTs 

together (irrespective of common inputs), one can use 

{LUT 0, LUT 1} or {LUT 2, LUT 3} or ... or {LUT 14, 

LUT 15} 

 

4.2.3  Using FFs in a SLICE: 

 There are 16 FFs per SLICE (two per LUT pair), and all 

can be used fully under certain conditions: 

 All FFs can take independent inputs from outside the 

SLICE, or outputs of their corresponding LUT pair (FF 0 

can take LUT 0 or LUT 1 output as input, ..., FF 15 can 

take LUT 14 or LUT 15 output as input) 

 All can be configured as either edge-triggered D-type flip-

flops or level-sensitive latches. The latch option is by top 

or bottom half of the SLICE (0 to 7, and 8 to 15). If the 

latch option is selected on a FF, all eight FFs in that half 

must be either used as latches or left unused. When 

configured as a latch, the latch is transparent when the 

clock input (CLK) is high. 

 There are two clock inputs (CLK) and two set/reset inputs 

(SR) to every SLICE for the FFs. Each clock or set/reset 

input is dedicated to eight of the sixteen FFs, split by top 

and bottom halves (0 to 7, and 8 to 15). FF pairs ({0,1} or 

{2,3} or ... or {14,15}) share the same clock and set/reset 

signals. The clock and set/reset signals have programmable 

polarity at their slice inputs, allowing any inversion to be 

automatically absorbed into the CLB. 

 There are four clock enables (CE) per SLICE. The clock 

enables are split both by top and bottom halves, and by the 

two FFs per LUT-pair. Thus, the CEs are independent for: 

{FF 0, FF 2, FF 4, FF 6}, {FF 1, FF 3, FF 5, FF 7}, {FF 8, 

FF 10, FF 12, FF 14}, {FF 9, FF 11, FF 13, FF 15}. When 

one storage element has CE enabled, the other three 

storage elements in the group must also have CE enabled. 

The CE is always active High at the slice, but can be 

inverted in the source logic. 

 The two SR set/reset inputs to a SLICE can be 

programmed to be synchronous or asynchronous. The 

set/reset signal can be programmed to be a set or reset, but 

not both, for any individual FF. The configuration options 

for the SR set and reset functionality of a register or latch 

are: No set or reset, Synchronous set (FDSE primitive), 

Synchronous reset (FDRE primitive), Asynchronous set 

(preset) (FDPE primitive), Asynchronous reset (clear) 

(FDCE primitive). The SR set/reset input can be ignored 

for groups of four flip-flops (the same groups as controlled 

by the CE inputs). When one FF has SR enabled, the other 

three FFs in the group must also have SR enabled. 

 The choice of set or reset can be controlled individually for 

each FF in a SLICE. The choice of synchronous (SYNC) 

or asynchronous (ASYNC) set/reset (SYNC_ATTR) is 
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controlled in groups of eight FFs, individually for the two 

separate SR inputs. 

 

Some of these FF Packing rules are illustrated in Figure 6. 

 

Figure 6. Flip Flop control signals connectivity within a 

SLICE 

 

More information on the CLB composition can be obtained from 

[5] 

 

4.3 Evaluation Metrics 
 For each design in the benchmark suite, the placers will be 

ranked based on the contest evaluation metric. The final 

rank for a placer will be the sum of the individual ranks on 

all the circuits. The placer with the smallest total rank wins 

the contest. 

 The placement runtime must be 12 hours or shorter. 

 The placement must be legal in terms of logic legalization. 

 The placement must be legal in terms of clock legalization 

rules described in Section 2. 

 The placement has to be routed by Vivado router, and the 

router has to complete the job within 12 hours. Routing is 

regarded as failed if it takes more than 12 hours to 

complete. 

 PlacementScore=RoutedWirelength*(1 + Runtime_Factor) 

o Vivado router reports total routed wirelength. This is 

the base of the score. 

o Total placement and routing runtime will be used in 

computing P&R_Runtime_Factor; 

o Runtime_Factor= -(Runtime - Median_Runtime) / 10.0  

o Runtime factor is between -10% and +10% 

 The failed place/route job will get the lowest rank on this 

design. In the presence of failures on multiple placers, the 

break-tie factors are (in order): placer failure, logic 

legalization failure, clock legalization failure, router 

failure. 
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