
Routability-Driven FPGA Placement Contest

Stephen Yang, Aman Gayasen, Chandra Mulpuri, Sainath Reddy, Rajat Aggarwal
Xilinx Inc.

2100 Logic Drive
San Jose, CA 95124

stepheny,amang,chandim,sainath,rajata@xilinx.com

ABSTRACT
The advances of FPGA technology and increasing size of FPGA
designs pose great challenges on FPGA design tools. Deep
research on FPGA physical design problems is paramount to
improve industrial tools. This contest is the first ISPD contest on
FPGA CAD tools. Routability driven FPGA placement, in context
of large designs modern FPGA architecture, is one of the best
topics to start the effort.

KEYWORDS
FPGA; Placement; Routability; Congestion; Contest

1. INTRODUCTION
FPGA (Field Programmable Gate Array) placement is a classic
problem in Electronic Design Automation field. It is one of the
key steps in FPGA design flow, directly impacting the completion
of the design flow and the performance of the resulting FPGA.
With the advances of FPGA hardware technology and wide
spreading applications, there are more and more challenges
imposed on FPGA placement problem [1].

In year 2005, ISPD hold the first placement contest. 10 teams
from worldwide universities research groups participated and
competed for the prizes. Since then ISPD has hold 11 different
contests, topics covering placement, global/detail routing, gate
sizing and clock tree synthesis. These contests greatly stimulated
academic research activities. A number of high-quality academic
tools with novel ideas and sophisticated algorithms have presented
in the past decade.

Yet ISPD has never done any CAD contest on FPGA related
problems. Given the difficult and unique challenges, FPGA
placement problem serves as a perfect topic for ISPD contest.
This contest attracts both classical FPGA placement research
groups, as well as standard-cell/mixed-size placement research
groups. The former groups have deep understanding on FPGA
architecture and FPGA specific algorithms like packing, timing-
driven placement and graph routing. The latter groups were used
to face large scale placement problem, dealing with hundreds of
thousands or even millions of movable objects. Attacking FPGA
problem from two different angles can greatly move academic

research forward and lead to effective and efficient FPGA
oriented algorithms.

As the world’s leading provider of FPGAs, Xilinx Inc. took the
responsibility to co-organize this FPGA placement contest. The
contest benchmarks are based on industry leading 20nm Virtex
UltraScale architecture. The size of the benchmarks reflects the
typical modern high-end FPGA designs. The well-defined contest
evaluation metrics have the key elements of FPGA design tool:
wirelength, routability and runtime are all considered. We believe
that this first FPGA placement contest will serve as the beginning
of the prosperous research of FPGA physical design, attracting
more young talents into the challenging and exciting EDA field.

2. BACKGROUND
There are many challenges in modern FPGA placement problem.

First, multiple objectives need to be considered during FPGA
placement. Traditional FPGA placer took total wirelength as the
main cost function. Nowadays, FPGA placer has to optimize the
following objectives: wirelength, congestion, timing, power,
utilization etc. Optimizing all the objectives at the same time is
very hard, yet modern FPGA designs do need all of them to stay
competitive.

Second, FPGA resource constraints have been the biggest
challenge for FPGA placement. Various resources including LUT,
flip flop, block RAM, DSP, distributed RAM need to be placed at
different sites on the device. Large unit resources like block RAM
and DSP are discrete --- their available sites are scarce and are
often far away from each other. Placer needs to handle the multi-
resource problem in a smooth fashion to be able to achieve good
results.

The next challenge is clock. Modern FPGAs have complex and
sophisticated clocking architecture. Designs with many clocks can
fall into hard dilemma: the placement without clock consideration
will eventually failed in clock rule checking, whereas posing the
clock constraints early greatly hurt the placement quality. Since
the clocking architecture is unique on each FPGA family, there is
no generic solution that can fit all situations.

The last but not least challenge is on tool runtime. FPGAs in
many applications replaced ASIC because their ease of design and
fast turn-around time. This poses great tool runtime requirement.
Unlike ASIC tools that can run overnight or days to get the
results, FPGA tools will be abandoned if they cannot complete
most jobs in a couple of hours. The runtime for placer often needs
to be within an hour. This is a very challenging goal considering
the ever grown FPGA design size. The above runtime number is
only for traditional FPGA designs. As FPGAs get used more and
more as software develop platform (e.g., SDAccel from Xilinx),
the runtime target is even higher.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To
copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from
Permissions@acm.org.
ISPD'16, April 3–6, 2016, Santa Rosa, California, USA.
© 2016 ACM. ISBN 978-1-4503-4039-7/16/04…$15.00.
DOI: http://dx.doi.org/10.1145/2872334.2886419

139

In addition, many FPGA specific rules/constraints pose more
restrictions on FPGA placement, including I/O placement,
physical synthesis compatibility, data path, large modules like
carry chain or cascaded BRAMs/DSPs, and processor area in
some FPGA device.

3. FPGA ARCHITECTURE
Xilinx FPGAs [2], an example of which is illustrated in Figure 1,
consist of an array of programmable blocks of different types,
including general logic (CLB), memory (BRAM) and multiplier
(DSP) blocks, surrounded by a programmable routing fabric
(interconnect) that allows these blocks to be connected via
horizontal and vertical routing channels. This array is surrounded
by programmable input/output blocks (IO) that interface the chip
to the outside world.

Figure 1. Example of Xilinx FPGA Architecture

This array has a configuration memory (SRAM) beneath it,
which, when loaded with appropriate bits, programs the blocks
and the interconnects to behave a certain way, as illustrated in
Figure 2.

Figure 2. Example of Programming the Xilinx FPGA

Given a logic design that the user wants to implement on the
FPGA, the Xilinx Implementation Tool flow (Vivado) converts

the design into the appropriate set of configuration bits
(Bitstream) which is loaded onto the SRAM to make the FPGA
behave as the design. There are usually multiple steps involved in
this tool flow, the main ones being, Synthesis, Placement,
Routing, and Bitstream generation. Synthesis tool infers the
design logic in terms of the logic blocks available within the
FPGA. Placement tool places these inferred logic blocks on the
various sites of physical logic blocks present in the FPGA.
Routing tool connects up the pins of these physical logic blocks
using the programmable interconnect routing structures in the
FPGA. Bitstream generation tool then proceeds to generate the set
of configuration bits that program these logic blocks and
interconnect routing structures to behave as the design intended.

The general logic block (also referred to as the configurable logic
block, or CLB), is the main resource for implementing general-
purpose combinatorial and sequential circuits. The CLB is made
up of the logic elements themselves, which are grouped together
into a slice. These logic elements are of the type lookup tables
(LUTs) or sequential elements (FFs). Each CLB contains one
slice. Each slice provides sixteen LUTs and sixteen flip-flops. The
slices and their CLBs are arranged in columns throughout the
device. There are, however, certain restrictions pertaining to how
these LUTs and FFs can be used within each slice. These are
explained in detail in the “Placement Evaluation Flow” section
under “Legalization Rules” subsection.

In the specific Xilinx FPGA we’re targeting for this contest, the
XCVU095-ffva2104-es2 device, we have 67,200 CLB/SLICE
locations, 880 usable IO locations, 770 DSP locations, and 1730
BRAM locations. More information on this device, and the
architecture in general, can be obtained from [5].

4. BENCHMARKS
The benchmarks for ISPD 2016 placement contest have been
generated using an internal netlist-generation tool based on
Generate NetList (Gnl). The tool allows us to create netlists of
different placement and routing complexities by varying the
number of components and their interconnection. Additionally, it
provides control over the type of components (primitives) used in
the netlist. For ISPD benchmarks, we have restricted the
primitives to be Look-Up-Tables (LUTs), Flip-Flops (FFs), DSP
blocks (DSPs), and Block RAMs (BRAMs). The target device is
xcvu095, part of the Virtex UltraScale [3] family.

The following properties of the netlist were varied among the
ISPD benchmarks.

1) Number of instances. We have created benchmarks that utilize
55% to 83% of the LUTs available. We have also varied the
number of DSPs, BRAMs, and FFs to create medium to highly
utilized designs.

2) Rent exponent. Interconnection complexity has been varied by
creating netlists of different Rent exponents. This is important to
test the routability aspect of the placement solution.

3) Number of resets. FPGA architecture limits the number of
unique reset nets per Slice. Hence, by varying the number of
resets we test how well the placer can support such restrictions.

Table 1 captures the characteristics of the benchmarks.

140

Figure 3. Benchmark Generation Flow

Figure 3 explains the flow used for generating these benchmarks.
First, we generate structural Verilog using our netlist-generation
tool. The input to this tool is a configuration file, which specifies
the desired parameters in the netlist. The structural Verilog file is
post-processed to create a flattened design, without any
hierarchies. Along with dissolving hierarchies, we also rename the
instances and nets in this step. Next, we run Vivado placer to
place IO ports of the design. Finally, we write the benchmark in
Bookshelf format. The Bookshelf format list the instances in the
design in a “.nodes” file and their interconnection in a “.nets” file.
It also writes IO placement in a “.pl” file. Library cells are
separately listed in a “*.lib” file.

5. PLACEMENT EVALUATION
5.1 Placement Interface
Contestants are expected to write the output of their placement
tool in a specific (.pl) file format. Placer's output placement file
should contain locations of all the instances in the design. The
location of an instance has three fields: x-coord, y-coord (to
determine the SITE) and BEL (index within the SITE). Figure 4
shows the BEL number for LUTs/FFs placed inside a SLICE
SITE.

For BRAM and DSP instances, since there are no BELs within a
SITE, the BEL index remains 0.

The following is a snippet of a placement file:

 inst_1000 165 161 3 # (this instance is a LUT)

 inst_1003 165 161 12 # (this instance is a FF)

 inst_1100 29 0 0 # (this instance is a DSP)

 inst_1200 34 0 0 # (this instance is a BRAM)

The placement output (.pl) file, will be given as an input to Xilinx
Vivado tool using the flow.tcl file, which is available as part of
each benchmarks archive. Vivado Placer will then read these
instance placements, and check for legal placement on every

Figure 4. BEL offsets within a SLICE

instance. In case of illegal placement, Vivado Placer will error out
with a reason behind the illegality for each instance. If the
placement is legal, Vivado router starts and completes routing, or
report unroutable design. If routing completes successfully, the
following message indicates total routed wirelength: “Total
Routed Wirelength: xxxxx (Vertical xxxx, Horizontal xxxx)”. In
case of unroutable placement, the following message shows up:
“CRITICAL WARNING: [Route 35-162] xxxx signals failed to
route due to routing congestion.”

5.2 Legalization Rules
Each SLICE site provides sixteen LUTs and sixteen FFs. There
are, however, certain restrictions pertaining to how these LUTs
and FFs can be used within each SLICE.

Using LUTs in a SLICE:

 The 16 LUTs within SLICE are conceptual LUTs that can
only be fully used under certain conditions:

 When implementing a 6-input LUT with one output, one
can only use LUT 1 (leaving LUT 0 unused) or LUT 3
(leaving LUT 2 unused) or ... or LUT 15 (leaving LUT 14
unused)

 When implementing two 5-input LUTs with separate
outputs but common inputs, one can use {LUT 0, LUT 1}
or {LUT 2, LUT 3} or ... or {LUT 14, LUT 15}

 The above rule of coming LUTs with separate outputs but
common inputs, holds good for 5-input LUTs (as
mentioned above) or fewer input LUTs as well

 When implementing two 3-input (or fewer input) LUTs
together (irrespective of common inputs), one can use
{LUT 0, LUT 1} or {LUT 2, LUT 3} or ... or {LUT 14,
LUT 15}

Generate Netlist with Desired
Properties (structural Verilog)

Post‐Processing
(Flatten and Rename)

IO Placement

write_benchmark

141

Using FFs in a SLICE:

 There are 16 FFs per SLICE (two per LUT pair), and all
can be used fully under certain conditions:

 All FFs can take independent inputs from outside the
SLICE, or outputs of their corresponding LUT pair (FF 0
can take LUT 0 or LUT 1 output as input, ..., FF 15 can
take LUT 14 or LUT 15 output as input)

 All can be configured as either edge-triggered D-type flip-
flops or level-sensitive latches. The latch option is by top
or bottom half of the SLICE (0 to 7, and 8 to 15). If the
latch option is selected on a FF, all eight FFs in that half
must be either used as latches or left unused. When
configured as a latch, the latch is transparent when the
clock input (CLK) is high.

 There are two clock inputs (CLK) and two set/reset inputs
(SR) to every SLICE for the FFs. Each clock or set/reset
input is dedicated to eight of the sixteen FFs, split by top
and bottom halves (0 to 7, and 8 to 15). FF pairs ({0,1} or
{2,3} or ... or {14,15}) share the same clock and set/reset
signals. The clock and set/reset signals have programmable
polarity at their slice inputs, allowing any inversion to be
automatically absorbed into the CLB.

 There are four clock enables (CE) per SLICE. The clock
enables are split both by top and bottom halves, and by the
two FFs per LUT-pair. Thus, the CEs are independent for:
{FF 0, FF 2, FF 4, FF 6}, {FF 1, FF 3, FF 5, FF 7}, {FF 8,
FF 10, FF 12, FF 14}, {FF 9, FF 11, FF 13, FF 15}. When
one storage element has CE enabled, the other three
storage elements in the group must also have CE enabled.
The CE is always active High at the slice, but can be
inverted in the source logic.

 The two SR set/reset inputs to a SLICE can be
programmed to be synchronous or asynchronous. The
set/reset signal can be programmed to be a set or reset, but
not both, for any individual FF. The configuration options
for the SR set and reset functionality of a register or latch
are: No set or reset, Synchronous set (FDSE primitive),
Synchronous reset (FDRE primitive), Asynchronous set
(preset) (FDPE primitive), Asynchronous reset (clear)
(FDCE primitive). The SR set/reset input can be ignored
for groups of four flip-flops (the same groups as controlled
by the CE inputs). When one FF has SR enabled, the other
three FFs in the group must also have SR enabled.

 The choice of set or reset can be controlled individually for
each FF in a SLICE. The choice of synchronous (SYNC)
or asynchronous (ASYNC) set/reset (SYNC_ATTR) is
controlled in groups of eight FFs, individually for the two
separate SR inputs.

Some of these FF Packing rules are illustrated in Figure 5.

More information on the CLB composition can be obtained from
[4].

5.3 Evaluation Metrics
 For each design in the benchmark suite, the placers will be

ranked based on the contest evaluation metric. The final
rank for a placer will be the sum of the individual ranks on
all the circuits. The placer with the smallest total rank wins
the contest.

 The placement runtime must be 12 hours or shorter.
 The placement must be legal (legalization rules are

described in the previous section).

Figure 5. Flip Flop control signals connectivity within a
SLICE

 The placement has to be routed by Vivado router, and the
router has to complete the job within 12 hours. Routing is
regarded as failed if it takes more than 12 hours to
complete.

 PlacementScore=RoutedWirelength*(1 + Runtime_Factor)
o Vivado router reports total routed wirelength. This is

the base of the score.
o Total placement and routing runtime will be used in

computing P&R_Runtime_Factor;
o Runtime_Factor= -(Runtime - Median_Runtime) / 10.0
o There is 1% scaling factor for every 10% runtime

reduction/addition against the median runtime of all
place+route solutions;

o Runtime factor is between -10% and +10%

142

o Although runtime is a part of the contest metric, the
"Total Routed Wirelength" will be the dominant
component. In other words, a placer will not get a
significant advantage if it is extremely fast compared to
the median runtime of all the placers participating in
the contest.

 The failed place/route job will get the lowest rank on this
design. In the presence of multiple failures, the break-tie
factors are: placer failure or router failure, router runtime,
number of unrouted nets, number of illegal placements.

6. ACKNOWLEDGMENTS
The authors would like to thank Dr. Ismail Bustany and Dr.
Steven Li for their valuable suggestions on the contest details.

7. REFERENCES
[1] R. Aggarwal, 2014. FPGA Place and Route Challenges. In

Proc. of International Symposium on Physical Design.

[2] Xilinx, “UltraScale Architecture”,
http://www.xilinx.com/products/technology/ultrascale.html

[3] Xilinx, “Virtex UltraScale FPGAs”,
http://www.xilinx.com/publications/prod_mktg/ultrascalevirt
ex-product-table

[4] Xilinx, “UltraScale Architecture Configurable Logic Block
User Guide”,
http://www.xilinx.com/support/documentation/user_guides/u
g574-ultrascale-clb.pdf

[5] Xilinx, “UltraScale Architecture and Product Overview”,
http://www.xilinx.com/support/documentation/data_sheets/ds
890-ultrascale-overview.pdf

[6] GNL: http://users.elis.ugent.be/~dstrooba/gnl/

Design #LUTs #FFs #BRAMs #DSPs #I/O #Control Sets Rent exponent

Design1 300K (55%) 241K (22%) 400 (23%) 200 (26%) 453 (54%) 651 0.5

Design2 300K (55%) 241K (22%) 400 (23%) 200 (26%) 453 (54%) 651 0.6

Design3 350K (65%) 259K (24%) 800 (46%) 300 (39%) 533 (64%) 1271 0.7

Design4 400K (74%) 304K (28%) 800 (46%) 500 (65%) 533 (64%) 1271 0.6

Design5 400K (74%) 292K (27%) 800 (46%) 500 (65%) 533 (64%) 1271 0.7

Design6 450K (83%) 338K (31%) 1000 (58%) 400 (52%) 603 (72%) 2091 0.55

Design7 450K (83%) 339K (31%) 1000 (58%) 400 (52%) 603 (72%) 2091 0.65

Table 1. Benchmark statistics

*Number in parenthesis indicates the utilization as percentage of available resources in the FPGA [6]

143

