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ABSTRACT 
The advances of FPGA technology and increasing size of FPGA 
designs pose great challenges on FPGA design tools. Deep 
research on FPGA physical design problems is paramount to 
improve industrial tools. This contest is the first ISPD contest on 
FPGA CAD tools. Routability driven FPGA placement, in context 
of large designs modern FPGA architecture, is one of the best 
topics to start the effort.  
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1. INTRODUCTION 
FPGA (Field Programmable Gate Array) placement is a classic 
problem in Electronic Design Automation field. It is one of the 
key steps in FPGA design flow, directly impacting the completion 
of the design flow and the performance of the resulting FPGA. 
With the advances of FPGA hardware technology and wide 
spreading applications, there are more and more challenges 
imposed on FPGA placement problem [1].  

In year 2005, ISPD hold the first placement contest. 10 teams 
from worldwide universities research groups participated and 
competed for the prizes. Since then ISPD has hold 11 different 
contests, topics covering placement, global/detail routing, gate 
sizing and clock tree synthesis. These contests greatly stimulated 
academic research activities. A number of high-quality academic 
tools with novel ideas and sophisticated algorithms have presented 
in the past decade. 

Yet ISPD has never done any CAD contest on FPGA related 
problems. Given the difficult and unique challenges, FPGA 
placement problem serves as a perfect topic for ISPD contest. 
This contest attracts both classical FPGA placement research 
groups, as well as standard-cell/mixed-size placement research 
groups. The former groups have deep understanding on FPGA 
architecture and FPGA specific algorithms like packing, timing-
driven placement and graph routing. The latter groups were used 
to face large scale placement problem, dealing with hundreds of 
thousands or even millions of movable objects. Attacking FPGA 
problem from two different angles can greatly move academic 

research forward and lead to effective and efficient FPGA 
oriented algorithms.  

As the world’s leading provider of FPGAs, Xilinx Inc. took the 
responsibility to co-organize this FPGA placement contest. The 
contest benchmarks are based on industry leading 20nm Virtex 
UltraScale architecture. The size of the benchmarks reflects the 
typical modern high-end FPGA designs. The well-defined contest 
evaluation metrics have the key elements of FPGA design tool: 
wirelength, routability and runtime are all considered. We believe 
that this first FPGA placement contest will serve as the beginning 
of the prosperous research of FPGA physical design, attracting 
more young talents into the challenging and exciting EDA field. 

2. BACKGROUND 
There are many challenges in modern FPGA placement problem. 

First, multiple objectives need to be considered during FPGA 
placement. Traditional FPGA placer took total wirelength as the 
main cost function. Nowadays, FPGA placer has to optimize the 
following objectives: wirelength, congestion, timing, power, 
utilization etc. Optimizing all the objectives at the same time is 
very hard, yet modern FPGA designs do need all of them to stay 
competitive. 

Second, FPGA resource constraints have been the biggest 
challenge for FPGA placement. Various resources including LUT, 
flip flop, block RAM, DSP, distributed RAM need to be placed at 
different sites on the device. Large unit resources like block RAM 
and DSP are discrete --- their available sites are scarce and are 
often far away from each other. Placer needs to handle the multi-
resource problem in a smooth fashion to be able to achieve good 
results. 

The next challenge is clock. Modern FPGAs have complex and 
sophisticated clocking architecture. Designs with many clocks can 
fall into hard dilemma: the placement without clock consideration 
will eventually failed in clock rule checking, whereas posing the 
clock constraints early greatly hurt the placement quality. Since 
the clocking architecture is unique on each FPGA family, there is 
no generic solution that can fit all situations. 

The last but not least challenge is on tool runtime. FPGAs in 
many applications replaced ASIC because their ease of design and 
fast turn-around time. This poses great tool runtime requirement. 
Unlike ASIC tools that can run overnight or days to get the 
results, FPGA tools will be abandoned if they cannot complete 
most jobs in a couple of hours. The runtime for placer often needs 
to be within an hour. This is a very challenging goal considering 
the ever grown FPGA design size. The above runtime number is 
only for traditional FPGA designs. As FPGAs get used more and 
more as software develop platform (e.g., SDAccel from Xilinx), 
the runtime target is even higher.  
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In addition, many FPGA specific rules/constraints pose more 
restrictions on FPGA placement, including I/O placement, 
physical synthesis compatibility, data path, large modules like 
carry chain or cascaded BRAMs/DSPs, and processor area in 
some FPGA device. 

3. FPGA ARCHITECTURE 
Xilinx FPGAs [2], an example of which is illustrated in Figure 1, 
consist of an array of programmable blocks of different types, 
including general logic (CLB), memory (BRAM) and multiplier 
(DSP) blocks, surrounded by a programmable routing fabric 
(interconnect) that allows these blocks to be connected via 
horizontal and vertical routing channels. This array is surrounded 
by programmable input/output blocks (IO) that interface the chip 
to the outside world.  

 

 
Figure 1. Example of Xilinx FPGA Architecture 

 

This array has a configuration memory (SRAM) beneath it, 
which, when loaded with appropriate bits, programs the blocks 
and the interconnects to behave a certain way, as illustrated in 
Figure 2. 

 

  
Figure 2. Example of Programming the Xilinx FPGA 

 

Given a logic design that the user wants to implement on the 
FPGA, the Xilinx Implementation Tool flow (Vivado) converts 

the design into the appropriate set of configuration bits 
(Bitstream) which is loaded onto the SRAM to make the FPGA 
behave as the design. There are usually multiple steps involved in 
this tool flow, the main ones being, Synthesis, Placement, 
Routing, and Bitstream generation. Synthesis tool infers the 
design logic in terms of the logic blocks available within the 
FPGA. Placement tool places these inferred logic blocks on the 
various sites of physical logic blocks present in the FPGA. 
Routing tool connects up the pins of these physical logic blocks 
using the programmable interconnect routing structures in the 
FPGA. Bitstream generation tool then proceeds to generate the set 
of configuration bits that program these logic blocks and 
interconnect routing structures to behave as the design intended. 

The general logic block (also referred to as the configurable logic 
block, or CLB), is the main resource for implementing general-
purpose combinatorial and sequential circuits. The CLB is made 
up of the logic elements themselves, which are grouped together 
into a slice. These logic elements are of the type lookup tables 
(LUTs) or sequential elements (FFs). Each CLB contains one 
slice. Each slice provides sixteen LUTs and sixteen flip-flops. The 
slices and their CLBs are arranged in columns throughout the 
device. There are, however, certain restrictions pertaining to how 
these LUTs and FFs can be used within each slice. These are 
explained in detail in the “Placement Evaluation Flow” section 
under “Legalization Rules” subsection. 

In the specific Xilinx FPGA we’re targeting for this contest, the 
XCVU095-ffva2104-es2 device, we have 67,200 CLB/SLICE 
locations, 880 usable IO locations, 770 DSP locations, and 1730 
BRAM locations. More information on this device, and the 
architecture in general, can be obtained from [5].  

4. BENCHMARKS 
The benchmarks for ISPD 2016 placement contest have been 
generated using an internal netlist-generation tool based on 
Generate NetList (Gnl). The tool allows us to create netlists of 
different placement and routing complexities by varying the 
number of components and their interconnection. Additionally, it 
provides control over the type of components (primitives) used in 
the netlist. For ISPD benchmarks, we have restricted the 
primitives to be Look-Up-Tables (LUTs), Flip-Flops (FFs), DSP 
blocks (DSPs), and Block RAMs (BRAMs). The target device is 
xcvu095, part of the Virtex UltraScale [3] family.  

The following properties of the netlist were varied among the 
ISPD benchmarks. 

1) Number of instances. We have created benchmarks that utilize 
55% to 83% of the LUTs available. We have also varied the 
number of DSPs, BRAMs, and FFs to create medium to highly 
utilized designs. 

2) Rent exponent. Interconnection complexity has been varied by 
creating netlists of different Rent exponents. This is important to 
test the routability aspect of the placement solution. 

3) Number of resets. FPGA architecture limits the number of 
unique reset nets per Slice. Hence, by varying the number of 
resets we test how well the placer can support such restrictions. 

Table 1 captures the characteristics of the benchmarks. 
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Figure 3. Benchmark Generation Flow 

 

Figure 3 explains the flow used for generating these benchmarks. 
First, we generate structural Verilog using our netlist-generation 
tool. The input to this tool is a configuration file, which specifies 
the desired parameters in the netlist. The structural Verilog file is 
post-processed to create a flattened design, without any 
hierarchies. Along with dissolving hierarchies, we also rename the 
instances and nets in this step. Next, we run Vivado placer to 
place IO ports of the design. Finally, we write the benchmark in 
Bookshelf format. The Bookshelf format list the instances in the 
design in a “.nodes” file and their interconnection in a “.nets” file. 
It also writes IO placement in a “.pl” file. Library cells are 
separately listed in a “*.lib” file. 

5. PLACEMENT EVALUATION 
5.1 Placement Interface 
Contestants are expected to write the output of their placement 
tool in a specific (.pl) file format. Placer's output placement file 
should contain locations of all the instances in the design. The 
location of an instance has three fields: x-coord, y-coord (to 
determine the SITE) and BEL (index within the SITE). Figure 4 
shows the BEL number for LUTs/FFs placed inside a SLICE 
SITE. 

For BRAM and DSP instances, since there are no BELs within a 
SITE, the BEL index remains 0. 

The following is a snippet of a placement file: 

      inst_1000 165 161 3              # (this instance is a LUT) 

      inst_1003 165 161 12            # (this instance is a FF) 

      inst_1100 29 0 0                    # (this instance is a DSP) 

      inst_1200 34 0 0                    # (this instance is a BRAM) 

The placement output (.pl) file, will be given as an input to Xilinx 
Vivado tool using the flow.tcl file, which is available as part of 
each benchmarks archive. Vivado Placer will then read these 
instance placements, and check for legal placement on every 

 
Figure 4. BEL offsets within a SLICE 

 

instance. In case of illegal placement, Vivado Placer will error out 
with a reason behind the illegality for each instance. If the 
placement is legal, Vivado router starts and completes routing, or 
report unroutable design. If routing completes successfully, the 
following message indicates total routed wirelength: “Total 
Routed Wirelength: xxxxx (Vertical xxxx, Horizontal xxxx)”. In 
case of unroutable placement, the following message shows up: 
“CRITICAL WARNING: [Route 35-162] xxxx signals failed to 
route due to routing congestion.”  

5.2 Legalization Rules 
Each SLICE site provides sixteen LUTs and sixteen FFs. There 
are, however, certain restrictions pertaining to how these LUTs 
and FFs can be used within each SLICE. 

Using LUTs in a SLICE: 

 The 16 LUTs within SLICE are conceptual LUTs that can 
only be fully used under certain conditions: 

 When implementing a 6-input LUT with one output, one 
can only use LUT 1 (leaving LUT 0 unused) or LUT 3 
(leaving LUT 2 unused) or ... or LUT 15 (leaving LUT 14 
unused) 

 When implementing two 5-input LUTs with separate 
outputs but common inputs, one can use {LUT 0, LUT 1} 
or {LUT 2, LUT 3} or ... or {LUT 14, LUT 15} 

 The above rule of coming LUTs with separate outputs but 
common inputs, holds good for 5-input LUTs (as 
mentioned above) or fewer input LUTs as well 

 When implementing two 3-input (or fewer input) LUTs 
together (irrespective of common inputs), one can use 
{LUT 0, LUT 1} or {LUT 2, LUT 3} or ... or {LUT 14, 
LUT 15} 
 
 

Generate Netlist with Desired 
Properties (structural Verilog)

Post‐Processing 
(Flatten and Rename)

IO Placement

write_benchmark
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Using FFs in a SLICE: 

 There are 16 FFs per SLICE (two per LUT pair), and all 
can be used fully under certain conditions: 

 All FFs can take independent inputs from outside the 
SLICE, or outputs of their corresponding LUT pair (FF 0 
can take LUT 0 or LUT 1 output as input, ..., FF 15 can 
take LUT 14 or LUT 15 output as input) 

 All can be configured as either edge-triggered D-type flip-
flops or level-sensitive latches. The latch option is by top 
or bottom half of the SLICE (0 to 7, and 8 to 15). If the 
latch option is selected on a FF, all eight FFs in that half 
must be either used as latches or left unused. When 
configured as a latch, the latch is transparent when the 
clock input (CLK) is high. 

 There are two clock inputs (CLK) and two set/reset inputs 
(SR) to every SLICE for the FFs. Each clock or set/reset 
input is dedicated to eight of the sixteen FFs, split by top 
and bottom halves (0 to 7, and 8 to 15). FF pairs ({0,1} or 
{2,3} or ... or {14,15}) share the same clock and set/reset 
signals. The clock and set/reset signals have programmable 
polarity at their slice inputs, allowing any inversion to be 
automatically absorbed into the CLB. 

 There are four clock enables (CE) per SLICE. The clock 
enables are split both by top and bottom halves, and by the 
two FFs per LUT-pair. Thus, the CEs are independent for: 
{FF 0, FF 2, FF 4, FF 6}, {FF 1, FF 3, FF 5, FF 7}, {FF 8, 
FF 10, FF 12, FF 14}, {FF 9, FF 11, FF 13, FF 15}. When 
one storage element has CE enabled, the other three 
storage elements in the group must also have CE enabled. 
The CE is always active High at the slice, but can be 
inverted in the source logic. 

 The two SR set/reset inputs to a SLICE can be 
programmed to be synchronous or asynchronous. The 
set/reset signal can be programmed to be a set or reset, but 
not both, for any individual FF. The configuration options 
for the SR set and reset functionality of a register or latch 
are: No set or reset, Synchronous set (FDSE primitive), 
Synchronous reset (FDRE primitive), Asynchronous set 
(preset) (FDPE primitive), Asynchronous reset (clear) 
(FDCE primitive). The SR set/reset input can be ignored 
for groups of four flip-flops (the same groups as controlled 
by the CE inputs). When one FF has SR enabled, the other 
three FFs in the group must also have SR enabled. 

 The choice of set or reset can be controlled individually for 
each FF in a SLICE. The choice of synchronous (SYNC) 
or asynchronous (ASYNC) set/reset (SYNC_ATTR) is 
controlled in groups of eight FFs, individually for the two 
separate SR inputs. 

Some of these FF Packing rules are illustrated in Figure 5. 

More information on the CLB composition can be obtained from 
[4]. 

5.3 Evaluation Metrics 
 For each design in the benchmark suite, the placers will be 

ranked based on the contest evaluation metric. The final 
rank for a placer will be the sum of the individual ranks on 
all the circuits. The placer with the smallest total rank wins 
the contest. 

 The placement runtime must be 12 hours or shorter. 
 The placement must be legal (legalization rules are 

described in the previous section). 

 

  
Figure 5. Flip Flop control signals connectivity within a 
SLICE 

 

 The placement has to be routed by Vivado router, and the 
router has to complete the job within 12 hours. Routing is 
regarded as failed if it takes more than 12 hours to 
complete. 

 PlacementScore=RoutedWirelength*(1 + Runtime_Factor) 
o Vivado router reports total routed wirelength. This is 

the base of the score. 
o Total placement and routing runtime will be used in 

computing P&R_Runtime_Factor; 
o Runtime_Factor= -(Runtime - Median_Runtime) / 10.0  
o There is 1% scaling factor for every 10% runtime 

reduction/addition against the median runtime of all 
place+route solutions; 

o Runtime factor is between -10% and +10% 
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o Although runtime is a part of the contest metric, the 
"Total Routed Wirelength" will be the dominant 
component. In other words, a placer will not get a 
significant advantage if it is extremely fast compared to 
the median runtime of all the placers participating in 
the contest. 

 The failed place/route job will get the lowest rank on this 
design. In the presence of multiple failures, the break-tie 
factors are: placer failure or router failure, router runtime, 
number of unrouted nets, number of illegal placements. 
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Design #LUTs #FFs #BRAMs #DSPs #I/O #Control Sets Rent exponent 

Design1 300K (55%) 241K (22%) 400 (23%) 200 (26%) 453 (54%) 651 0.5 

Design2 300K (55%) 241K (22%) 400 (23%) 200 (26%) 453 (54%) 651 0.6 

Design3 350K (65%) 259K (24%) 800 (46%) 300 (39%) 533 (64%) 1271 0.7 

Design4 400K (74%) 304K (28%) 800 (46%) 500 (65%) 533 (64%) 1271 0.6 

Design5 400K (74%) 292K (27%) 800 (46%) 500 (65%) 533 (64%) 1271 0.7 

Design6 450K (83%) 338K (31%) 1000 (58%) 400 (52%) 603 (72%) 2091 0.55 

Design7 450K (83%) 339K (31%) 1000 (58%) 400 (52%) 603 (72%) 2091 0.65 

Table 1. Benchmark statistics 

*Number in parenthesis indicates the utilization as percentage of available resources in the FPGA [6] 
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